Bruno Mezzetti
Marche Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Mezzetti.
Nutrition | 2012
Francesca Giampieri; Sara Tulipani; José M. Alvarez-Suarez; José L. Quiles; Bruno Mezzetti; Maurizio Battino
Strawberries are a common and important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to have relevant biological activity in human health. Among these phytochemicals, anthocyanin and ellagitannins are the major antioxidant compounds. Although individual phytochemical constituents of strawberries have been studied for their biological activities, human intervention studies using whole fruits are still lacking. Here, the nutritional contribution and phytochemical composition of the strawberry are reviewed, as is the role played by the maturity, genotype, and storage effects on this fruit. Specific attention is focused on fruit absorption, metabolism, and the possible beneficial biological activity on human health.
Journal of Agricultural and Food Chemistry | 2008
Sara Tulipani; Bruno Mezzetti; Franco Capocasa; Stefano Bompadre; Jules Beekwilder; C. H. Ric De Vos; Esra Capanoglu; Arnaud G. Bovy; Maurizio Battino
Strawberry contains high levels of micronutrients and phytochemical compounds. These exhibit functional roles in plant growth and metabolism and are also essential for the nutritional and organoleptic qualities of the fruit. The aim of the present work was to better characterize the phytochemical and antioxidant profiles of the fruit of nine different genotypes of strawberry, by measuring the total flavonoid, anthocyanin, vitamin C, and folate contents. Cultivar effects on the total antioxidant capacities of strawberries were also tested. In addition, the individual contribution of the main antioxidant compounds was assessed by HPLC separation coupled to an online postcolumn antioxidant detection system. This study showed the important role played by the genetic background on the chemical and antioxidant profiles of strawberry fruits. Significant differences were found between genotypes for the total antioxidant capacity and for all tested classes of compounds. The HPLC analyses confirmed qualitative and quantitative variability in the antioxidant profiles. These studies show that differences exist among cultivars, applicable in dietary studies in human subjects.
Journal of Nutritional Biochemistry | 2014
José M. Alvarez-Suarez; Francesca Giampieri; Sara Tulipani; Tiziana Casoli; Giuseppina Di Stefano; Ana M. González-Paramás; Celestino Santos-Buelga; Franco Busco; José L. Quiles; Mario D. Cordero; Stefano Bompadre; Bruno Mezzetti; Maurizio Battino
Strawberries are an important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to exert beneficial effects in human health. Healthy volunteers were supplemented daily with 500 g of strawberries for 1 month. Plasma lipid profile, circulating and cellular markers of antioxidant status, oxidative stress and platelet function were evaluated at baseline, after 30 days of strawberry consumption and 15 days after the end of the study. A high concentration of vitamin C and anthocyanins was found in the fruits. Strawberry consumption beneficially influenced the lipid profile by significantly reducing total cholesterol, low-density lipoprotein cholesterol and triglycerides levels (-8.78%, -13.72% and -20.80%, respectively; P<.05) compared with baseline period, while high-density lipoprotein cholesterol remained unchanged. Strawberry supplementation also significant decreased serum malondialdehyde, urinary 8-OHdG and isoprostanes levels (-31.40%, -29.67%, -27.90%, respectively; P<.05). All the parameters returned to baseline values after the washout period. A significant increase in plasma total antioxidant capacity measured by both ferric reducing ability of plasma and oxygen radical absorbance capacity assays and vitamin C levels (+24.97%, +41.18%, +41.36%, respectively; P<.05) was observed after strawberry consumption. Moreover, the spontaneous and oxidative hemolysis were significant reduced (-31.7% and -39.03%, respectively; P<.05), compared to the baseline point, which remained stable after the washout period. Finally, strawberry intake significant decrease (P<.05) the number of activated platelets, compared to both baseline and washout values. Strawberries consumption improves plasma lipids profile, biomarkers of antioxidant status, antihemolytic defenses and platelet function in healthy subjects, encouraging further evaluation on a population with higher cardiovascular disease risk.
Nutrition Reviews | 2009
Maurizio Battino; Jules Beekwilder; Béatrice Denoyes-Rothan; Margit Laimer; Gordon J. McDougall; Bruno Mezzetti
Berries contain powerful antioxidants, potential allergens, and other bioactive compounds. Genetic and environmental factors affect production and storage of such compounds. For this reason breeding and biotechnological approaches are currently used to control or to increase the content of specific health-related compounds in fruits. This work reviews the main bioactive compounds determining the nutritional quality of berries, the major factors affecting their content and activity, and the genetic options currently available to achieve new genotypes able to provide, under controlled cultivation conditions, berries with the proper balance of bioactive compounds for improving consumer health.
BMC Biotechnology | 2004
Bruno Mezzetti; Lucia Landi; Tiziana Pandolfini; Angelo Spena
BackgroundThe DefH9-iaaM gene fusion which is expressed specifically in placenta/ovules and promotes auxin-synthesis confers parthenocarpic fruit development to eggplant, tomato and tobacco. Transgenic DefH9-iaaM eggplants and tomatoes show increased fruit production due mainly to an improved fruit set. However, the weight of the fruits is also frequently increased.ResultsDefH9-iaaM strawberry and raspberry plants grown under standard cultivation conditions show a significant increase in fruit number and size and fruit yield. In all three Rosaceae species tested, Fragaria vesca, Fragaria x ananassa and Rubus idaeus, DefH9-iaaM plants have an increased number of flowers per inflorescence and an increased number of inflorescences per plant. This results in an increased number of fruits per plant. Moreover, the weight and size of transgenic fruits was also increased. The increase in fruit yield was approximately 180% in cultivated strawberry, 140% in wild strawberry, and 100% in raspberry. The DefH9-iaaM gene is expressed in the flower buds of all three species. The total IAA (auxin) content of young flower buds of strawberry and raspberry expressing the DefH9-iaaM gene is increased in comparison to untransformed flower buds. The DefH9-iaaM gene promotes parthenocarpy in emasculated flowers of both strawberry and raspberry.ConclusionsThe DefH9-iaaM gene is expressed and biologically active in Rosaceae. The DefH9-iaaM gene can be used, under cultivation conditions that allow pollination and fertilization, to increase fruit productivity significantly in Rosaceae species. The finding that the DefH9-iaaM auxin-synthesizing gene increases the number of inflorescences per plant and the number of flowers per inflorescence indicates that auxin plays a role in plant fecundity in these three perennial Rosaceae species.
Journal of Agricultural and Food Chemistry | 2012
Francesca Giampieri; José M. Alvarez-Suarez; Sara Tulipani; Ana M. Gonzáles-Paramás; Celestino Santos-Buelga; Stefano Bompadre; José L. Quiles; Bruno Mezzetti; Maurizio Battino
Exposure to UV-A radiation is known to induce discrete lesions in DNA and the generation of free radicals that lead to a wide array of skin diseases. Strawberry (Fragaria × ananassa) contains several polyphenols with strong antioxidant and anti-inflammatory activities. Because the major representative components of strawberry are anthocyanins, these may significantly contribute to its properties. To test this hypothesis, methanolic extracts from the Sveva cultivar were analyzed for anthocyanin content and for their ability to protect human dermal fibroblasts against UV-A radiation, as assayed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide and Comet assays. Five anthocyanin pigments were identified using high-performance liquid chromatography-diode array detection-electrospray ionization/mass spectrometry. Moreover, the strawberry extract showed a photoprotective activity in fibroblasts exposed to UV-A radiation, increasing cellular viability, and diminishing DNA damage, as compared to control cells. Overall, our data show that strawberry contains compounds that confer photoprotective activity in human cell lines and may protect skin against the adverse effects of UV-A radiation.
BMC Biotechnology | 2002
Bruno Mezzetti; Tiziana Pandolfini; Oriano Navacchi; Lucia Landi
BackgroundEfficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. The current methods for the production of transgenic grape plants are based on Agrobacterium-mediated transformation followed by regeneration from embryogenic callus. However, grape embryogenic calli are laborious to establish and the phenotype of the regenerated plants can be altered.ResultsTransgenic grape plants (V. vinifera, table-grape cultivars Silcora and Thompson Seedless) were produced using a method based on regeneration via organogenesis. In vitro proliferating shoots were cultured in the presence of increasing concentrations of N6-benzyl adenine. The apical dome of the shoot was removed at each transplantation which, after three months, produced meristematic bulk tissue characterized by a strong capacity to differentiate adventitious shoots. Slices prepared from the meristematic bulk were used for Agrobacterium-mediated transformation of grape plants with the gene DefH9-iaaM. After rooting on kanamycin containing media and greenhouse acclimatization, transgenic plants were transferred to the field. At the end of the first year of field cultivation, DefH9-iaaM grape plants were phenotypically homogeneous and did not show any morphological alterations in vegetative growth. The expression of DefH9-iaaM gene was detected in transgenic flower buds of both cultivars.ConclusionsThe phenotypic homogeneity of the regenerated plants highlights the validity of this method for both propagation and genetic transformation of table grape cultivars. Expression of the DefH9-iaaM gene takes place in young flower buds of transgenic plants from both grape cultivars.
Food Chemistry | 2011
Sara Tulipani; José M. Alvarez-Suarez; Franco Busco; Stefano Bompadre; José L. Quiles; Bruno Mezzetti; Maurizio Battino
Significant increases in the plasma total antioxidant capacity (TAC) have already been reported after acute intake of strawberries. In addition, antihaemolitic effects of strawberry extracts have been recently demonstrated in vitro, revealing that part of the antioxidant properties of strawberry bioactive compounds could lie in their localisation within cell membranes. However, there is a lack of research evidence from in vivo protracted strawberry consumption studies. We carried out a 16-day pilot study where 12 healthy subjects ingested 500g of antioxidants-rich strawberries daily, and we evaluated the potential effects of fruit consumption on biomarkers of plasma and cellular antioxidant status. A significant increase in fasting plasma TAC and in serum vitamin C concentrations were progressively observed during the period of strawberry supplementation. An enhanced resistance to haemolysis was also observed in both AAPH-treated and untreated erythrocytes, collected during and after the period of strawberry consumption. The results obtained in this work suggest that regular consumption of antioxidant-rich strawberries may exert an improvement on the plasma antioxidant status and an increase on the antihaemolitic defenses of human erythrocytes.
Critical Reviews in Food Science and Nutrition | 2016
Tamara Y. Forbes-Hernandez; Massimiliano Gasparrini; Sadia Afrin; Stefano Bompadre; Bruno Mezzetti; José L. Quiles; Francesca Giampieri; Maurizio Battino
Current evidence indicates that the consumption of strawberries, a natural source of a wide range of nutritive and bioactive compounds, is associated with the prevention and improvement of chronic-degenerative diseases. Studies involving cells and animals provide evidence on the anti-inflammatory, anticarcinogenic and antiproliferative activity of the strawberry. Epidemiological and clinical studies demonstrate that its acute consumption increases plasma antioxidant capacity, improves circulating inflammatory markers and ameliorates postprandial glycemic response. At the same time, a protracted intake reduces chronic inflammation and improves plasma lipid profile, supporting cardiovascular health, especially in individuals with increased risk for metabolic syndrome. To explain these beneficial effects, much attention has been paid in the past to the antioxidant properties of strawberry polyphenols. However, recent research has shown that their biological and functional activities are related not only to the antioxidant capacity but also to the modulation of many cellular pathways involved in metabolism, survival, proliferation, and antioxidant defenses. The aim of this review is to update and discuss the molecular and cellular mechanisms proposed in recent studies to elucidate the healthy effects of strawberry polyphenols against the most common chronic diseases, such as cancer, cardiovascular diseases, metabolic syndrome, and inflammation.
Molecules | 2014
Francesca Giampieri; José M. Alvarez-Suarez; Luca Mazzoni; Tamara Y. Forbes-Hernandez; Massimiliano Gasparrini; Ana M. González-Paramás; Celestino Santos-Buelga; José L. Quiles; Stefano Bompadre; Bruno Mezzetti; Maurizio Battino
Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.