Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Monier is active.

Publication


Featured researches published by Bruno Monier.


Nature Cell Biology | 2010

An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos

Bruno Monier; Anne Pélissier-Monier; Andrea H. Brand; Bénédicte Sanson

Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.


Nature | 2015

Apico-basal forces exerted by apoptotic cells drive epithelium folding

Bruno Monier; Melanie Gettings; Thomas Mangeat; Sonia Schott; Ana Guarner; Magali Suzanne

Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.


Development | 2005

Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart

Bruno Monier; Martine Astier; Michel Sémériva; Laurent Perrin

In the Drosophila larval cardiac tube, aorta and heart differentiation are controlled by the Hox genes Ultrabithorax (Ubx) and abdominal A (abdA), respectively. There is evidence that the cardiac tube undergoes extensive morphological and functional changes during metamorphosis to form the adult organ, but both the origin of adult cardiac tube myocytes and the underlying genetic control have not been established. Using in vivo time-lapse analysis, we show that the adult fruit fly cardiac tube is formed during metamorphosis by the reprogramming of differentiated and already functional larval cardiomyocytes, without cell proliferation. We characterise the genetic control of the process, which is cell autonomously ensured by the modulation of Ubx expression and AbdA activity. Larval aorta myocytes are remodelled to differentiate into the functional adult heart, in a process that requires the regulation of Ubx expression. Conversely, the shape, polarity, function and molecular characteristics of the surviving larval contractile heart myocytes are profoundly transformed as these cells are reprogrammed to form the adult terminal chamber. This process is mediated by the regulation of AbdA protein function, which is successively required within these persisting myocytes for the acquisition of both larval and adult differentiated states. Importantly, AbdA specificity is switched at metamorphosis to induce a novel genetic program that leads to differentiation of the terminal chamber. Finally, the steroid hormone ecdysone controls cardiac tube remodelling by impinging on both the regulation of Ubx expression and the modification of AbdA function. Our results shed light on the genetic control of one in vivo occurring remodelling process, which involves a steroid-dependent modification of Hox expression and function.


Current Biology | 2006

Control of Cardiac Rhythm by ORK1, a Drosophila Two-Pore Domain Potassium Channel

Nathalie Lalevée; Bruno Monier; Sébastien Sénatore; Laurent Perrin; Michel Sémériva

Unravelling the mechanisms controlling cardiac automatism is critical to our comprehension of heart development and cardiac physiopathology. Despite the extensive characterization of the ionic currents at work in cardiac pacemakers, the precise mechanisms initiating spontaneous rhythmic activity and, particularly, those responsible for the specific control of the pacemaker frequency are still matters of debate and have not been entirely elucidated. By using Drosophila as a model animal to analyze automatic cardiac activity, we have investigated the function of a K+ channel, ORK1 (outwardly rectifying K+ channel-1) in cardiac automatic activity. ORK1 is a two-pore domain K+ (K2P) channel, which belongs to a diverse and highly regulated superfamily of potassium-selective leak channels thought to provide baseline regulation of membrane excitability. Cardiac-specific inactivation of Ork1 led to an increase in heart rhythm. By contrast, when overexpressed, ORK1 completely prevented heart beating. In addition, by recording action potentials, we showed that the level of Ork1 activity sets the cardiac rhythm by controlling the duration of the slow diastolic depolarization phase. Our observations identify a new mechanism for cardiac rhythm control and provide the first demonstration that K2P channels regulate the automatic cardiac activity.


Cellular and Molecular Life Sciences | 2011

Establishment and maintenance of compartmental boundaries: role of contractile actomyosin barriers

Bruno Monier; Anne Pélissier-Monier; Bénédicte Sanson

During animal development, tissues and organs are partitioned into compartments that do not intermix. This organizing principle is essential for correct tissue morphogenesis. Given that cell sorting defects during compartmentalization in humans are thought to cause malignant invasion and congenital defects such as cranio-fronto-nasal syndrome, identifying the molecular and cellular mechanisms that keep cells apart at boundaries between compartments is important. In both vertebrates and invertebrates, transcription factors and short-range signalling pathways, such as EPH/Ephrin, Hedgehog, or Notch signalling, govern compartmental cell sorting. However, the mechanisms that mediate cell sorting downstream of these factors have remained elusive for decades. Here, we review recent data gathered in Drosophila that suggest that the generation of cortical tensile forces at compartmental boundaries by the actomyosin cytoskeleton could be a general mechanism that inhibits cell mixing between compartments.


PLOS Genetics | 2011

Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

Samir Merabet; Isma Litim-Mecheri; Daniel Karlsson; Richa Dixit; Mehdi Saadaoui; Bruno Monier; Christine Brun; Stefan Thor; K. VijayRaghavan; Laurent Perrin; Jacques Pradel; Yacine Graba

Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.


Fly | 2007

Downstream of homeotic genes: in the heart of Hox function.

Bruno Monier; Florencia Tevy; Laurent Perrin; Maria Capovilla; Michel Sémériva

A functional organ is constituted of diverse cell types. Each one occupies a distinct position and is associated to specific morphological and physiological functions. The identification of the genetic programs controlling these elaborated and highly precise features of organogenesis is crucial to understand how a mature organ works under normal conditions, and how pathologies can develop. Recently, a number of studies have reported a critical role for Hox genes in one example of organogenesis: cardiogenesis in Drosophila. Beyond the interest in understanding the molecular basis of functional cardiogenesis, this system might provide a model for proposing new paradigms of how Hox genes achieve their action throughout development.


Mechanisms of Development | 2017

Apoptotic forces in tissue morphogenesis

Arnaud Ambrosini; Mélanie Gracia; Amsha Proag; Mégane Rayer; Bruno Monier; Magali Suzanne

It is now well established that apoptosis is induced in response to mechanical strain. Indeed, increasing compressive forces induces apoptosis in confined spheroids of tumour cells, whereas releasing stress reduces apoptosis in spheroids cultivated in free suspension (Cheng et al., 2009). Apoptosis can also be induced by applying a 100 to 250MPa pressure, as shown in different cultured cells (for review, see (Frey et al., 2008)). During epithelium development, the pressure caused by a fast-growing clone can trigger apoptosis at the vicinity of the clone, mediating mechanical cell competition (Levayer et al., 2016). While the effect of strain has long been known for its role in apoptosis induction, the reciprocal mechanism has only recently been highlighted. First demonstrated at the cellular level, the effect of an apoptotic cell on its direct neighbours has been analysed in different kinds of monolayer epithelium (Gu et al., 2011; Rosenblatt et al., 2001; Kuipers et al., 2014; Lubkov & Bar-Sagi, 2014). More recently, the concept of a broader impact of apoptotic cell behaviours on tissue mechanical strain has emerged from the characterisation of tissue remodelling during Drosophila development (Toyama et al., 2008; Monier et al., 2015). In the present review, we summarize our current knowledge on the mechanical impact of apoptosis during tissue remodelling.


Development | 2017

A fluorescent toolkit for spatiotemporal tracking of apoptotic cells in living Drosophila tissues

Sonia Schott; Arnaud Ambrosini; Audrey Barbaste; Corinne Benassayag; Mélanie Gracia; Amsha Proag; Mégane Rayer; Bruno Monier; Magali Suzanne

Far from being passive, apoptotic cells influence their environment. For example, they promote tissue folding, myoblast fusion and modulate tumor growth. Understanding the role of apoptotic cells necessitates their efficient tracking within living tissues, a task that is currently challenging. In order to easily spot apoptotic cells in developing Drosophila tissues, we generated a series of fly lines expressing different fluorescent sensors of caspase activity. We show that three of these reporters (GFP-, Cerulean- and Venus-derived molecules) are detected specifically in apoptotic cells and throughout the whole process of programmed cell death. These reporters allow the specific visualization of apoptotic cells directly within living tissues, without any post-acquisition processing. They overcome the limitations of other apoptosis detection methods developed so far and, notably, they can be combined with any kind of fluorophore. Summary: Caspase-activity sensors derived from GFP, Venus and Cerulean fluorophores reveal apoptotic cell dynamics throughout the whole apoptotic process within fixed and living Drosophila tissues.


bioRxiv | 2018

Physical and functional cell-matrix uncoupling in a developing tissue under tension

Magali Suzanne; Amsha Proag; Bruno Monier

Tissue mechanics play a crucial role in organ development. It relies on cells and extracellular matrix (ECM) mechanical properties, but also on their reciprocal interaction. The relative physical contribution of cells and ECM to morphogenesis is poorly understood. Here, we dissected the mechanics of the envelope of the Drosophila developing leg, an epithelium submitted to a number of mechanical stresses: first stretched, it is then torn apart and withdrawn to free the leg. During stretching, we found that mechanical tension is entirely borne by the ECM at first, then by the cellular monolayer as soon as they detach themselves from one another. Then, each envelope layer is removed by an independent mechanism: while ECM withdraws following local proteolysis, cellular monolayer withdrawal is independent of ECM degradation and driven by an autonomous myosin-II-dependent contraction. These results reveal a physical and functional cell-matrix uncoupling that could timely control tissue dynamics during development.

Collaboration


Dive into the Bruno Monier's collaboration.

Top Co-Authors

Avatar

Magali Suzanne

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laurent Perrin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Sémériva

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Amsha Proag

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Guarner

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge