Bruno Moulin de Andrade
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Moulin de Andrade.
Journal of Endocrinology | 2010
Elaine Cristina Lima de Souza; Álvaro Souto Padrón; William Miranda Oliveira Braga; Bruno Moulin de Andrade; Mario Vaisman; Luiz Eurico Nasciutti; Andrea Claudia Freitas Ferreira; Denise P. Carvalho
Phosphoinositide-3-kinase (PI3K) inhibition increases functional sodium iodide symporter (NIS) expression in both FRTL-5 rat thyroid cell line and papillary thyroid cancer lineages. In several cell types, the stimulation of PI3K results in downstream activation of the mechanistic target of rapamycin (MTOR), a serine-threonine protein kinase that is a critical regulator of cellular metabolism, growth, and proliferation. MTOR activation is involved in the regulation of thyrocyte proliferation by TSH. Here, we show that MTOR inhibition by rapamycin increases iodide uptake in TSH-stimulated PCCL3 thyroid cell line, although the effect of rapamycin was less pronounced than PI3K inhibition. Thus, NIS inhibitory pathways stimulated by PI3K might also involve the activation of proteins other than MTOR. Insulin downregulates iodide uptake and NIS protein expression even in the presence of TSH, and both effects are counterbalanced by MTOR inhibition. NIS protein expression levels were correlated with iodide uptake ability, except in cells treated with TSH in the absence of insulin, in which rapamycin significantly increased iodide uptake, while NIS protein levels remained unchanged. Rapamycin avoids the activation of both p70 S6 and AKT kinases by TSH, suggesting the involvement of MTORC1 and MTORC2 in TSH effect. A synthetic analog of rapamycin (everolimus), which is clinically used as an anticancer agent, was able to increase rat thyroid iodide uptake in vivo. In conclusion, we show that MTOR kinase participates in the control of thyroid iodide uptake, demonstrating that MTOR not only regulates cell survival, but also normal thyroid cell function both in vitro and in vivo.
Journal of Endocrinology | 2014
Álvaro Souto Padrón; Ruy Andrade Louzada Neto; Thiago U. Pantaleão; Maria Carolina de Souza dos Santos; Renata Lopes Araujo; Bruno Moulin de Andrade; Monique da Silva Leandro; João Pedro Saar Werneck de Castro; Andrea Claudia Freitas Ferreira; Denise P. Carvalho
In general, 3,5-diiodothyronine (3,5-T2) increases the resting metabolic rate and oxygen consumption, exerting short-term beneficial metabolic effects on rats subjected to a high-fat diet. Our aim was to evaluate the effects of chronic 3,5-T2 administration on the hypothalamus–pituitary–thyroid axis, body mass gain, adipose tissue mass, and body oxygen consumption in Wistar rats from 3 to 6 months of age. The rats were treated daily with 3,5-T2 (25, 50, or 75 μg/100 g body weight, s.c.) for 90 days between the ages of 3 and 6 months. The administration of 3,5-T2 suppressed thyroid function, reducing not only thyroid iodide uptake but also thyroperoxidase, NADPH oxidase 4 (NOX4), and thyroid type 1 iodothyronine deiodinase (D1 (DIO1)) activities and expression levels, whereas the expression of the TSH receptor and dual oxidase (DUOX) were increased. Serum TSH, 3,3′,5-triiodothyronine, and thyroxine were reduced in a 3,5-T2 dose-dependent manner, whereas oxygen consumption increased in these animals, indicating the direct action of 3,5-T2 on this physiological variable. Type 2 deiodinase activity increased in both the hypothalamus and the pituitary, and D1 activities in the liver and kidney were also increased in groups treated with 3,5-T2. Moreover, after 3 months of 3,5-T2 administration, body mass and retroperitoneal fat pad mass were significantly reduced, whereas the heart rate and mass were unchanged. Thus, 3,5-T2 acts as a direct stimulator of energy expenditure and reduces body mass gain; however, TSH suppression may develop secondary to 3,5-T2 administration.
American Journal of Physiology-endocrinology and Metabolism | 2009
Raquel L. B. Araújo; Bruno Moulin de Andrade; M. L. da Silva; A. C. F. Ferreira; Denise P. Carvalho
The relationship between thyroid function and leptin has been extensively studied; however, the mechanisms underlying the changes in thyroid hormone economy that occur during caloric deprivation remain elusive. Our goal was to evaluate the thyroid function of rats submitted to 40% food restriction after chronic leptin replacement. Caloric restriction for 25 days led to significantly reduced serum leptin, thyroid-stimulating hormone (TSH), thyroxine (T(4)), and triiodothyronine (T(3)) and increased serum corticosterone, while liver, kidney, and thyroid type I deiodinase (D1) and brown adipose tissue (BAT) type II deiodinase (D2) activities were decreased and hypothalamic D2 was significantly increased. Interestingly, thyroid iodide uptake was unchanged by caloric restriction, but thyroperoxidase (TPO) activity was significantly reduced. Leptin replacement for the last 10 days of caloric restriction normalized serum leptin and TSH levels, but serum T(4) and T(3) levels and thyroid D1 and TPO activities were not reestablished. Also, a negative effect of leptin administration on Na(+)-I(-) symporter function was detected. Liver and kidney D1 and hypothalamic and BAT D2 were normalized by leptin, while pituitary D2 was significantly decreased. In conclusion, a tissue-specific modulation of deiodinases might be implicated in the normalization of thyroid function during leptin replacement in food-restricted rats. Although leptin restores the hypothalamus-pituitary axis during food restriction, it exerts a direct negative effect on the thyroid gland; thus normalization of serum thyroid hormones might depend on changes in deiodinase activities and the long-term thyroid stimulation by TSH to counterbalance the direct negative effects of leptin on the thyroid gland.
Thyroid | 2013
Rodrigo S. Fortunato; William Miranda Oliveira Braga; Victor H. Ortenzi; Deivid C. Rodrigues; Bruno Moulin de Andrade; Leandro Miranda-Alves; Edson Rondinelli; Corinne Dupuy; Andrea Claudia Freitas Ferreira; Denise P. Carvalho
BACKGROUND Dual oxidases (DUOX1 and DUOX2) are NADPH oxidases (NOX) involved in hydrogen peroxide production necessary for thyroid hormonogenesis, but recently, the NOX4 has also been described in the thyroid gland. The prevalence of thyroid disease is higher in women, and the basis for this difference might involve a higher oxidative stress level in the female thyroid gland. Hence, we aimed at evaluating whether the function and the expression of enzymes involved in the thyroid redox balance differ between females and males. METHODS DUOX1, DUOX2, NOX4, glutathione peroxidase (GPx), and catalase activities and expression levels were evaluated in the thyroids of prepubertal and adult male and female rats. The mRNA levels of DUOXA1 and DUOXA2, the DUOX maturation factors, and of p22phox and Poldip2 (subunits of NOX4) were also determined. RESULTS A higher calcium-independent H(2)O(2) production was detected in the adult female rat thyroid, being higher in the estrous phase of the cycle. Moreover, the expression of NOX4 and Poldip2 mRNA was higher in the thyroids of adult female rats, as well as in PCCL3 cells treated with 17β-estradiol. The GPx1 mRNA expression was higher in adult female thyroids, while GPx2 and GPx3 mRNA and total GPx activity were not significantly different. Catalase mRNA expression and activity, together with thyroid thiol levels were significantly lower in the adult female rat thyroid. CONCLUSIONS Taken together, our results show that the thyroid gland of female rats is exposed to higher oxidative stress levels due both to increased reactive oxygen species (ROS) production through NOX4, and decreased ROS degradation.
American Journal of Physiology-cell Physiology | 2011
Bruno Moulin de Andrade; Renata Lopes Araujo; Robert L. S. Perry; Elaine Cristina Lima de Souza; Juliana M. Cazarin; Denise P. Carvalho; Rolando B. Ceddia
The aim of this study was to investigate the role of AMP-kinase (AMPK) in the regulation of iodide uptake by the thyroid gland. Iodide uptake was assessed in PCCL3 follicular thyroid cells exposed to the AMPK agonist 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR), and also in rat thyroid glands 24 h after a single intraperitoneal injection of AICAR. In PCCL3 cells, AICAR-induced AMPK and acetyl-CoA carboxylase (ACC) phosphorylation decreased iodide uptake in a concentration-dependent manner, while the AMPK inhibitor compound C prevented this effect. In the thyroid gland of rats injected with AICAR, AMPK and ACC phosphorylation was increased and iodide uptake was reduced by ~35%. Under conditions of increased AMPK phosphorylation/activation such as TSH deprivation or AICAR treatment, significant reductions in cellular Na(+)/I(-)-symporter (NIS) protein (~41%) and mRNA content (~65%) were observed. The transcriptional (actinomycin D) and translational (cycloheximide) inhibitors, as well as the AMPK inhibitor compound C prevented AICAR-induced reduction of NIS protein content in PCCL3 cells. The presence of TSH in the culture medium reduced AMPK phosphorylation in PCCL3 cells, while inhibition of protein kinase A (PKA) with H89 prevented this effect. Conversely, the adenylyl cyclase activator forskolin abolished the AMPK phosphorylation response induced by TSH withdrawal in PCCL3 cells. These findings demonstrate that TSH suppresses AMPK phosphorylation/activation in a cAMP-PKA-dependent manner. In summary, we provide novel evidence that AMPK is involved in the physiological regulation of iodide uptake, which is an essential step for the formation of thyroid hormones as well as for the regulation of thyroid function.
Thyroid | 2012
Bruno Moulin de Andrade; Juliana M. Cazarin; Patricia Zancan; Denise P. Carvalho
BACKGROUND Glucose is transported into cells by specific glucose transporter proteins (GLUTs) that are widely expressed in a tissue-specific manner. The mechanisms that regulate glucose uptake and metabolism in thyroid cells are poorly defined. Recently, our group showed that AMP-activated protein kinase (AMPK) plays a pivotal role in the rat thyroid gland, downregulating iodide uptake by thyroid cells even in the presence of its main stimulator thyrotropin (TSH). Since AMPK increases glucose uptake in different tissues, and taken into consideration that in pathophysiological conditions such as thyroid cancer a negative correlation between iodide and glucose uptake occurs, we hypothesized that AMPK might modulate glucose uptake in thyroid cells. METHODS Rat follicular thyroid PCCL3 cells cultivated in Hams F-12 supplemented with 5% calf serum and hormones were exposed to the AMPK pharmacological activator 5-aminoimidazole-4 carboxamide ribonucleoside (AICAR) or AMPK antagonist compound C for 24 hours either in the presence or absence of TSH. Glucose uptake was assessed in vitro using 2-deoxy-D-[(3)H]glucose. RESULTS AMPK activation by AICAR induced a significant increase in glucose uptake by PCCL3 cells, an effect that was completely reversed by the AMPK inhibitor compound C. Also, the AICAR mediated increase in glucose uptake was detected either in the presence or absence of TSH. The mechanism by which AICAR increases glucose uptake is related to higher levels of GLUT 1 protein content and hexokinase (HK) activity in thyroid cells. CONCLUSION Our results show that AMPK activation significantly upregulates GLUT 1 content and glucose uptake, and it also stimulates hexokinase activity, the first step of glycolysis.
European Journal of Endocrinology | 2013
Ana Paula Aguiar Vidal; Bruno Moulin de Andrade; Fernanda Vaisman; Juliana M. Cazarin; Luis Felipe Pinto; Marisa Maria Dreyer Breitenbach; Rossana Corbo; Adriana Caroli-Bottino; Fernando Soares; Mario Vaisman; Denise P. Carvalho
UNLABELLED AMP-activated protein kinase (AMPK) is activated by the depletion in cellular energy levels and allows adaptive changes in cell metabolism and cell survival. Recently, our group described that AMPK plays an important role in the regulation of iodide and glucose uptake in thyroid cells. However, AMPK signaling pathway in human thyroid carcinomas has not been investigated so far. OBJECTIVE To evaluate the expression and activity of AMPK in papillary thyroid carcinomas. METHODS We examined total and phosphorylated AMPK (tAMPK and pAMPK) and phosphorylated acetyl-CoA-carboxylase (pACC) expressions through imunohistochemistry, using a tissue microarray block composed of 73 papillary thyroid carcinomas (PAP CA) or microcarcinomas (PAP MCA) and six adenoma (AD) samples from patients followed at the Federal University Hospital. The expression levels were compared with the non-neoplastic tissues from the same patient. Two different pathologists analyzed the samples and attributed scores of staining intensity and the proportion of stained cells. A total index was obtained by multiplying the values of intensity and the proportion of stained cells (INTxPROP). RESULTS tAMPK, pAMPK, and pACC showed a predominant cytoplasmic staining in papillary carcinomas, adenomas, and non-neoplastic thyroid tissues. However, the intensity and the proportion of stained cells were higher in carcinomas, so that a significant increase was found in the INTxPROP score both in PAP CA and PAP MCA, when compared with their respective controls. CONCLUSION Our results show unequivocally that AMPK pathway is highly activated in papillary thyroid carcinomas; however, more studies are necessary to understand the pathophysiological significance of AMPK activation in thyroid carcinogenesis.
PLOS ONE | 2015
Bruno Moulin de Andrade; Marcelo R. Baldanza; Karla Consort Ribeiro; Anderson Porto; Ramon Peçanha; Fabio S. A. Fortes; Gisele Zapata-Sudo; Antonio C. Campos-de-Carvalho; Regina Coeli dos Santos Goldenberg; João Pedro Saar Werneck-de-Castro
Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.
Bioscience Reports | 2014
Bruno Moulin de Andrade; Denise P. Carvalho
Approximately 90% of non-medullary thyroid malignancies originate from the follicular cell and are classified as papillary or follicular (well-differentiated) thyroid carcinomas, showing an overall favorable prognosis. However, recurrence or persistence of the disease occurs in some cases associated with the presence of loco-regional or distant metastatic lesions that generally become resistant to radioiodine therapy, while glucose uptake and metabolism are increased. Recent advances in the field of tumor progression have shown that circulating tumor cells (CTC) are metabolic and genetically heterogeneous. There is now special interest in unraveling the mechanisms that allow the reminiscence of dormant tumor lesions that might be related to late disease progression and increased risk of recurrence. AMP-activated protein kinase (AMPK) is activated by the depletion in cellular energy levels and allows adaptive changes in cell metabolism that are fundamental for cell survival in a stressful environment; nevertheless, the activation of this kinase also decreases cell proliferation rate and induces tumor cell apoptosis. In the thyroid field, AMPK emerged as a novel important intracellular pathway, since it regulates both iodide and glucose uptakes in normal thyroid cells. Furthermore, it has recently been demonstrated that AMPK pathway is highly activated in papillary thyroid carcinomas, although the clinical significance of these findings remains elusive. Herein we review the current knowledge about the role of AMPK activation in thyroid physiology and pathophysiology, with special focus on thyroid cancer.
Journal of Endocrinology | 2008
Renata Lopes Araujo; Bruno Moulin de Andrade; Álvaro Souto Padron de Figueiredo; Monique Leandro da Silva; Michelle P. Marassi; Valmara S. Pereira; Eliete Bouskela; Denise P. Carvalho