Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Piar is active.

Publication


Featured researches published by Bruno Piar.


Journal of Computational Physics | 2006

A finite element penalty-projection method for incompressible flows

Matthieu Jobelin; Céline Lapuerta; Jean-Claude Latché; Philippe Angot; Bruno Piar

The penalty-projection method for the solution of Navier-Stokes equations may be viewed as a projection scheme where an augmentation term is added in the first stage, namely the solution of the momentum balance equation, to constrain the divergence of the predicted velocity field. After a presentation of the scheme in the time semi-discrete formulation, then in fully discrete form for a finite element discretization, we assess its behaviour against a set of benchmark tests, including in particular prescribed velocity and open boundary conditions. The results demonstrate that the augmentation always produces beneficial effects. As soon as the augmentation parameter takes a significant value, the projection method splitting error is reduced, pressure boundary layers are suppressed and the loss of spatial convergence of the incremental projection scheme in case of open boundary conditions does not occur anymore. For high values of the augmentation parameter, the results of coupled solvers are recovered. Consequently, in contrast with standard penalty methods, there is no need for a dependence of the augmentation parameter with the time step, and this latter can be kept to reasonable values, to avoid to degrade too severely the conditioning of the linear operator associated to the velocity prediction step.


European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique | 2008

Une méthode de pénalité-projection pour les écoulements dilatables

Matthieu Jobelin; Bruno Piar; Philippe Angot; Jean-Claude Latché

Nous présentons dans cet article une nouvelle méthode de correction de pression pour les écoulements dilatables. Nommée « méthode de pénalité-projection », cette technique diffère des schémas de projection usuels par l’ajout dans l’étape de prédiction d’un terme de pénalisation, construit pour contraindre la vitesse à satisfaire le bilan de masse. Ce terme est multiplié par un coefficient r, dit paramètre de pénalisation. Nous montrons par des expériences numériques que ce schéma est bien plus précis que la méthode usuelle. L’erreur de fractionnement, dominante à fort pas de temps, est réduite à volonté en augmentant r ; à noter, toutefois, que l’usage d’une valeur trop importante dégrade le conditionnement de l’opérateur associé à l’étape de prédiction. Par ailleurs, les pertes de convergence de la méthode de projection usuelle en cas de conditions aux limites ouvertes sont corrigées, dès que r est non nul.


Archive | 2014

A Staggered Scheme with Non-conforming Refinement for the Navier-Stokes Equations

Fabrice Babik; Jean-Claude Latché; Bruno Piar; Khaled Saleh

We propose a numerical scheme for the incompressible Navier-Stokes equations. The pressure is approximated at the cell centers while the vector valued velocity degrees of freedom are localized at the faces of the cells. The scheme is able to cope with unstructured non-conforming meshes, involving hanging nodes. The discrete convection operator, of finite volume form, is built with the purpose to obtain an \(L^2\)-stability property, or, in other words, a discrete equivalent to the kinetic energy identity. The diffusion term is approximated by extending the usual Rannacher-Turek finite element to non-conforming meshes. The scheme is first order in space for energy norms, as shown by the numerical experiments.


Transport in Porous Media | 2010

Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows

Franck Boyer; Céline Lapuerta; Sebastian Minjeaud; Bruno Piar; Michel Quintard


Journal of Fluid Mechanics | 2012

Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface

Romain Bonhomme; Jacques Magnaudet; Fabien Duval; Bruno Piar


Esaim: Proceedings | 2009

A LOCAL ADAPTIVE REFINEMENT METHOD WITH MULTIGRID PRECONDITIONNING ILLUSTRATED BY MULTIPHASE FLOWS SIMULATIONS.

Franck Boyer; Céline Lapuerta; Sebastian Minjeaud; Bruno Piar


Mathematical Modelling and Numerical Analysis | 2009

Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Robert Eymard; Raphaèle Herbin; Jean-Claude Latché; Bruno Piar


Calcolo | 2007

On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem

Robert Eymard; Raphaèle Herbin; Jean-Claude Latché; Bruno Piar


Journal of Computational Physics | 2006

A finite element penaltyprojection method for incompressible flows

Matthieu Jobelin; Céline Lapuerta; J.-C. Latchea; Ph. Angot; Bruno Piar


Archive | 2008

A multigrid method with local adaptive refinement, application to a ternary Cahn-Hilliard model.

Franck Boyer; Céline Lapuerta; Sebastian Minjeaud; Bruno Piar

Collaboration


Dive into the Bruno Piar's collaboration.

Top Co-Authors

Avatar

Jean-Claude Latché

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Céline Lapuerta

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Franck Boyer

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Matthieu Jobelin

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaèle Herbin

École centrale de Marseille

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Minjeaud

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Fabien Duval

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Researchain Logo
Decentralizing Knowledge