Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Vlaeminck is active.

Publication


Featured researches published by Bruno Vlaeminck.


PLOS ONE | 2014

Role of the Lower and Upper Intestine in the Production and Absorption of Gut Microbiota-Derived PUFA Metabolites

Céline Druart; Audrey M. Neyrinck; Bruno Vlaeminck; Veerle Fievez; Patrice D. Cani; Nathalie M. Delzenne

In vitro studies have suggested that isolated gut bacteria are able to metabolize PUFA into CLA (conjugated linoleic acids) and CLnA (conjugated linolenic acids). However, the bioavailability of fatty acid metabolites produced in vivo by the gut microbes remains to be studied. Therefore, we measured intestinal concentration and plasma accumulation of bacterial metabolites produced from dietary PUFA in mice, first injected with a lipoprotein lipase inhibitor, then force-fed with either sunflower oil (200 µl) rich in n-6 PUFA or linseed oil (200 µl) rich in n-3 PUFA. The greatest production of bacterial metabolites was observed in the caecum and colon, and at a much lesser extent in the jejunum and ileum. In the caecal content, CLA proportions were higher in sunflower oil force-fed mice whereas CLnA proportions were higher in linseed oil force-fed mice. The accumulation of the main metabolites (CLA cis-9,trans-11-18:2 and CLnA cis-9,trans-11,cis-15-18:3) in the caecal tissue was not associated with their increase in the plasma, therefore suggesting that, if endogenously produced CLA and CLnA have any biological role in host metabolism regulation, their effect would be confined at the intestinal level, where the microbiota is abundant.


Lipids | 2014

Rumen Metabolism of 22:6n-3 In Vitro is Dependent on its Concentration and Inoculum Size, but Less Dependent on Substrate Carbohydrate Composition

Bruno Vlaeminck; Tamara Braeckman; Veerle Fievez

Ruminal disappearance of linoleic and linolenic acid has been studied extensively. Less is known of the metabolism of docosahexaenoic acid (22:6n-3). The aim of this study was to identify factors which affect the disappearance of 22:6n-3 during in vitro batch incubations using rumen fluid from sheep. In experiment 1, the effect of the rumen fluid/buffer ratio (0.2 or 0.4), substrate (cellulose or cellulose/glucose), time of 22:6n-3 addition (0.08xa0mg/mL after 0 or 6xa0h of incubation) and incubation time (24 or 48xa0h) was evaluated. A mixture design was used in experiment 2 to evaluate the effect of carbohydrate type (cellulose, glucose, cellobiose and starch) on 22:6n-3 disappearance (0.08xa0mg/mL). In experiment 3, several concentrations of 22:6n-3 (0.05–0.30xa0mg/mL) were evaluated with different substrate mixtures (combinations of cellobiose, starch and cellulose). In a final experiment, the effect of the rumen fluid/buffer ratio (0.20, 0.35 and 0.50) and substrate (glucose, cellobiose and starch) was evaluated. In this experiment, 22:6n-3 was added as a proportion of rumen fluid ranging from 0.1 to 0.4xa0mg/mL rumen fluid, contrary to former experiments where concentrations were relative to culture medium. Low levels of 22:6n-3 (0.05xa0mg/mL) allowed extensive metabolism whereas increasing amounts of 22:6n-3 hampered its disappearance. A greater proportion of rumen fluid resulted in increased disappearance of 22:6n-3. The effect of carbohydrate type was small compared with the former two factors. These results suggest that in vitro metabolism of 22:6n-3 is mostly dictated by the conditions at the start of the incubation, i.e., inoculum, probably reflecting the density of bacteria able to metabolize 22:6n-3.


Food Chemistry | 2015

Protection of polyunsaturated oils against ruminal biohydrogenation and oxidation during storage using a polyphenol oxidase containing extract from red clover

Frederik Gadeyne; G. Van Ranst; Bruno Vlaeminck; Els Vossen; P. Van der Meeren; Veerle Fievez

Polyunsaturated fatty acid (PUFA) are to a large extent subject to biohydrogenation in a ruminal environment, which results to the healthy value of these PUFA being lost upon dietary addition to ruminants. PUFA are also prone to lipid oxidation upon storage. Therefore, it was tested whether emulsions could be protected against in vitro ruminal biohydrogenation and oxidation during storage by using protein extracts rich in polyphenol oxidase, an enzyme responsible for browning of plant tissues. PUFA rich emulsions were made with a protein extract from red clover (Trifolium pratense L.) before adding a synthetic diphenol (4-methylcatechol) to induce protection. Results after in vitro incubation confirmed the hypothesis and indicated the potential to prevent PUFA in linseed or fish oil from ruminal biohydrogenation and oxidation during storage through addition of 4-methylcatechol to the emulsions. Protection depended on the amount of oil present and protein concentrations in the emulsions. Protection efficiency increased with increasing the amounts of diphenol present in the emulsion per unit interfacial surface area. It is suggested that protection is caused by an effective encapsulation by cross-linking of the protein layer at the emulsion interface. For the first time, a method is described to protect PUFA using an enzyme abundantly available in nature, polyphenol oxidase, in combination with 4-methylcatechol.


Reproduction | 2017

Maternal metabolic stress may affect oviduct gatekeeper function

L. Jordaens; Veerle Van Hoeck; Veronica Maillo; Alfonso Gutierrez-Adan; Waleed F.A. Marei; Bruno Vlaeminck; Sofie Thys; Roger G. Sturmey; P.E.J. Bols; J.L.M.R. Leroy

We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24-h treatments at Day 9: (1) control (0u2009µM NEFAu2009+u20090% EtOH), (2) solvent control (0u2009µM NEFAu2009+u20090.45% EtOH), (3) basal NEFA (720u2009µM NEFAu2009+u20090.45% EtOH in the basal compartment) and (4) apical NEFA (720u2009µM NEFAu2009+u20090.45% EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment and related to transepithelial electric resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA uptake were studied using Bodipy 493/503 and immunolabelling of FA transporters (FAT/CD36, FABP3 and CAV1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that apical NEFA reduced relative TER increase (46.85%) during treatment and increased FITC-albumin flux (27.59%) compared to other treatments. In basal NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased respectively 56.0 and 33.5% of initial FA concentrations. Apical NEFA allowed no FA transfer, but induced LD accumulation and upregulated FA transporter expression (↑CD36, ↑FABP3 and ↑CAV1). Gene expression in apical NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA) and FA uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function-specific gene expression (OVGP1, ESR1 and FOXJ1). Overall, elevated NEFAs affected BOEC metabolism and barrier function differently depending on NEFA exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.


BMC Microbiology | 2016

Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18

Jeyamalar Jeyanathan; Marlene Escobar; Robert John Wallace; Veerle Fievez; Bruno Vlaeminck

BackgroundRumen microbes metabolize 22:6n-3. However, pathways of 22:6n-3 biohydrogenation and ruminal microbes involved in this process are not known. In this study, we examine the ability of the well-known rumen biohydrogenating bacteria, Butyrivibrio fibrisolvens D1 and Butyrivibrio proteoclasticus P18, to hydrogenate 22:6n-3.ResultsButyrivibrio fibrisolvens D1 failed to hydrogenate 22:6n-3 (0.5 to 32xa0μg/mL) in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Growth of B. fibrisolvens was delayed at the higher 22:6n-3 concentrations; however, total volatile fatty acid production was not affected. Butyrivibrio proteoclasticus P18 hydrogenated 22:6n-3 in growth medium containing autoclaved ruminal fluid that either had or had not been centrifuged. Biohydrogenation only started when volatile fatty acid production or growth of B. proteoclasticus P18 had been initiated, which might suggest that growth or metabolic activity is a prerequisite for the metabolism of 22:6n-3. The amount of 22:6n-3 hydrogenated was quantitatively recovered in several intermediate products eluting on the gas chromatogram between 22:6n-3 and 22:0. Formation of neither 22:0 nor 22:6 conjugated fatty acids was observed during 22:6n-3 metabolism. Extensive metabolism was observed at lower initial concentrations of 22:6n-3 (5, 10 and 20xa0μg/mL) whereas increasing concentrations of 22:6n-3 (40 and 80xa0μg/mL) inhibited its metabolism. Stearic acid formation (18:0) from 18:2n-6 by B. proteoclasticus P18 was retarded, but not completely inhibited, in the presence of 22:6n-3 and this effect was dependent on 22:6n-3 concentration.ConclusionsFor the first time, our study identified ruminal bacteria with the ability to hydrogenate 22:6n-3. The gradual appearance of intermediates indicates that biohydrogenation of 22:6n-3 by B. proteoclasticus P18 occurs by pathways of isomerization and hydrogenation resulting in a variety of unsaturated 22 carbon fatty acids. During the simultaneous presence of 18:2n-6 and 22:6n-3, B. proteoclasticus P18 initiated 22:6n-3 metabolism before converting 18:1 isomers into 18:0.


The Journal of Agricultural Science | 2016

Effect of changes in lipid classes during wilting and ensiling of red clover using two silage additives on in vitro ruminal biohydrogenation

Frederik Gadeyne; K. De Ruyck; G. Van Ranst; N. De Neve; Bruno Vlaeminck; Veerle Fievez

Although forage lipid is generally rich in polyunsaturated fatty acids (PUFA), recovery of these fatty acids (FA) in milk and meat of ruminant origin is generally low, due to microbial biohydrogenation (BH) taking place in the rumen. Since lipolysis is a prerequisite for BH, the latter process is expected to be enhanced when (conserved) forages contain lower levels of esterified FA (particularly polar lipids; PL). However, this was not observed in former studies with red clover ( Trifolium pratense L.). Furthermore, red clover inclusion in the herbivores diet was associated with decreased rumen BH as compared with other forages. Differences in plant lipase activity during wilting and ensiling has been attributed to changes in disappearance from the PL fraction, but a potential role of microbial lipases in silo has not yet been elucidated. Therefore, the aims of the present study were to assess whether BH of red clover FA is linked with PL levels of the (conserved) starting material and to clarify the possible role of in silo microbial activity on PL disappearance. In order to obtain sufficient variation in forage PL and microbial activity, laboratory-scale silages were made by wilting and ensiling damaged or undamaged red clover using molasses or formic acid as ensiling additive, while perennial ryegrass ( Lolium perenne L.) was used as a control. Distribution of lipids within three lipid fractions (PL, free FA and neutral lipids) in forages was determined and BH calculated after 24 h in vitro rumen incubation. Results indicated microbial lipases in silages did not enhance FA disappearance from the PL fraction. A gradual decrease of FA in the PL fraction upon conservation was found, both in red clover and ryegrass, irrespective of the degree of damage. In red clover PL losses started from the wilting phase, while substantial PL disappearance from ryegrass only started upon ensiling. Proportions of PUFA remaining in the PL fraction after wilting and ensiling of red clover were positively correlated with PUFA BH, while this effect was not observed for ryegrass. Red clover PUFA seemed to be partially protected against ruminal BH, while disappearance of FA from the PL fraction did not seem to be hampered. Results indicated the encapsulation mechanism as a consequence of protein-bound phenol formation induced by polyphenol oxidase is still the most probable hypothesis to explain red clovers increased flow of PUFA across the rumen.


Journal of Agricultural and Food Chemistry | 2016

Polyphenol Oxidase Containing Sidestreams as Emulsifiers of Rumen Bypass Linseed Oil Emulsions: Interfacial Characterization and Efficacy of Protection against in Vitro Ruminal Biohydrogenation.

Frederik Gadeyne; Nympha De Neve; Bruno Vlaeminck; Erik Claeys; Paul Van Der Meeren; Veerle Fievez

The low transfer in ruminants of dietary polyunsaturated fatty acids to the milk or peripheral tissues is largely due to ruminal biohydrogenation. Lipids emulsified by a polyphenol oxidase (PPO) rich protein extract of red clover were shown before to be protected against this breakdown after cross-linking with 4-methylcatechol. Protein extracts of 13 other vegetal resources were tested. Surprisingly, the effectiveness to protect emulsified lipids against in vitro ruminal biohydrogenation largely depended on the origin of the extract and its protein concentration but was not related to PPO activity. Moreover, PPO isoforms in vegetal sources, effectively protecting emulsified lipids, were diverse and their presence at the emulsion interface did not seem essential. Potato tuber peels were identified as an interesting biological source of emulsifying proteins and PPO, particularly since protein extracts of industrial potato sidestreams proved to be suitable for the current application.


Environmental Microbiology | 2017

Mucosa‐associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of poly‐unsaturated fat

Rosemarie De Weirdt; Emma Hernandez-Sanabria; Veerle Fievez; Eva Mees; Annelies Geirnaert; Florence Van Herreweghen; Ramiro Vilchez-Vargas; Pieter Van den Abbeele; Ruy Jauregui; Dietmar H. Pieper; Bruno Vlaeminck; Tom Van de Wiele

Polyunsaturated fatty acids (PUFAs) may affect colon microbiome homeostasis by exerting (specific) antimicrobial effects and/or interfering with mucosal biofilm formation at the gut mucosal interface. We used standardized batch incubations and the Mucosal-Simulator of the Human Microbial Intestinal Ecosystem (M-SHIME) to show the in vitro luminal and mucosal effects of the main PUFA in the Western diet, linoleic acid (LA). High concentrations of LA were found to decrease butyrate production and Faecalibacterium prausnitzii numbers dependent on LA biohydrogenation to vaccenic acid (VA) and stearic acid (SA). In faecal batch incubations, LA biohydrogenation and butyrate production were positively correlated and SA did not inhibit butyrate production. In the M-SHIME, addition of a mucosal environment stimulated biohydrogenation to SA and protected F. prausnitzii from inhibition by LA. This was probably due to the preference of two biohydrogenating genera Roseburia and Pseudobutyrivibrio for the mucosal niche. Co-culture batch incubations using Roseburia hominis and F. prausnitzii validated these observations. Correlations networks further uncovered the central role of Roseburia and Pseudobutyrivibrio in protecting luminal and mucosal SHIME microbiota from LA-induced stress. Our results confirm how cross-shielding interactions provide resilience to the microbiome and demonstrate the importance of biohydrogenating, mucosal bacteria for recovery from LA stress.


Animal | 2016

Effect of adsorbants on in vitro biohydrogenation of 22:6n-3 by mixed cultures of rumen microorganisms

M. Escobar; Bruno Vlaeminck; Jeyamalar Jeyanathan; L. P. Thanh; Kevin J. Shingfield; Robert John Wallace; Veerle Fievez

Studies on microbial biohydrogenation of fatty acids in the rumen are of importance as this process lowers the availability of nutritionally beneficial unsaturated fatty acids for incorporation into meat and milk but also might result in the accumulation of biologically active intermediates. The impact was studied of adsorption of 22:6n-3 (DHA) to particulate material on its disappearance during 24 h in vitro batch incubations with rumen inoculum. Four adsorbants were used in two doses (1 and 5 mg/ml of mucin, gum arabic, bentonite or silicic acid). In addition, the distribution of 22:6n-3 in the pellet and supernatant of diluted rumen fluid was measured. Bentonite and silicic acid did not alter the distribution of 22:6n-3 between pellet and supernatant nor increased the disappearance of 22:6n-3 during the incubation. Both mucin and gum arabic increased the recovery of 22:6n-3 in the supernatant, indicating that these compounds lowered the adsorption of the fatty acid to ruminal particles. This was associated with an increased disappearance of 22:6n-3, when initial 22:6n-3 was 0.06 or 0.10 mg/ml, and an increased formation of 22:0, when initial 22:6n-3 was 0.02 mg/ml, during the 24 h batch culture experiment. Addition of gum arabic to pure cultures of Butyrivibrio fibrisolvens or Butyrivibrio proteoclasticus did not negate the inhibitory effect of 22:6n-3 on growth. As both mucin and gum arabic provide fermentable substrate for ruminal bacteria, an additional experiment was performed in which mucin and gum arabic were replaced by equal amounts of starch, cellulose or xylan. No differences in disappearance of 22:6n-3 were observed, suggesting that the stimulatory effect of mucin and gum arabic on disappearance of 22:6n-3 most probably is not due to provision of an alternative site of adsorption but related to stimulation of bacterial growth. A relatively high proportion of 22:6n-3 can be reduced to 22:0 provided the initial concentration is low.


Frontiers in Microbiology | 2018

Rumen biohydrogenation and microbial community changes upon early life supplementation of 22:6n-3 enriched microalgae to goats

Lore Dewanckele; Bruno Vlaeminck; Emma Hernandez-Sanabria; Alexis Ruiz-González; Sieglinde Debruyne; Jeyamalar Jeyanathan; Veerle Fievez

Dietary supplementation of docosahexaenoic acid (DHA)-enriched products inhibits the final step of biohydrogenation in the adult rumen, resulting in the accumulation of 18:1 isomers, particularly of trans(t)-11 18:1. Occasionally, a shift toward the formation of t10 intermediates at the expense of t11 intermediates can be triggered. However, whether similar impact would occur when supplementing DHA-enriched products during pregnancy or early life remains unknown. Therefore, the current in vivo study aimed to investigate the effect of a nutritional intervention with DHA in the early life of goat kids on rumen biohydrogenation and microbial community. Delivery of DHA was achieved by supplementing DHA-enriched microalgae (DHA Gold) either to the maternal diet during pregnancy (prenatal) or to the diet of the young offspring (postnatal). At the age of 12 weeks, rumen fluid was sampled for analysis of long-chain fatty acids and microbial community based on bacterial 16S rRNA amplicon sequencing. Postnatal supplementation with DHA-enriched microalgae inhibited the final biohydrogenation step, as observed in adult animals. This resulted particularly in increased ruminal proportions of t11 18:1 rather than a shift to t10 intermediates, suggesting that both young and adult goats might be less prone to dietary induced shifts toward the formation of t10 intermediates, in comparison with cows. Although Butyrivibrio species have been identified as the most important biohydrogenating bacteria, this genus was more abundant when complete biohydrogenation, i.e. 18:0 formation, was inhibited. Blautia abundance was positively correlated with 18:0 accumulation, whereas Lactobacillus spp. Dialister spp. and Bifidobacterium spp. were more abundant in situations with greater t10 accumulation. Extensive comparisons made between current results and literature data indicate that current associations between biohydrogenation intermediates and rumen bacteria in young goats align with former observations in adult ruminants.

Collaboration


Dive into the Bruno Vlaeminck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge