Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan D. Schindler is active.

Publication


Featured researches published by Bryan D. Schindler.


International Journal of Antimicrobial Agents | 2012

Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus

Christos Kosmidis; Bryan D. Schindler; Pauline L. Jacinto; Diixa Patel; Karanpreet Bains; Susan M. Seo; Glenn W. Kaatz

Increased expression of multidrug resistance efflux pump (MDR-EP) genes in clinical isolates of Staphylococcus aureus occurs frequently, but its temporal and geographic variability is unknown. Such strains may contaminate the hospital environment, posing an infection control problem. Nearly 700 clinical isolates from different geographic locales as well as 91 environmental isolates recovered from two Detroit hospitals were studied. Ethidium bromide (EtBr) minimum inhibitory concentration (MIC), quantitative expression of all characterised chromosomal MDR-EP genes, and the presence of qacA/B and smr were determined for all strains. In addition, for norA- and/or mepA-overexpressing strains, the spa type was established. MDR-EP gene overexpression varied temporally and geographically, and overexpressing strains were present in the hospital environment. Increased expression of norA was associated with meticillin resistance and spa type t002, a rare type among control strains, consistent with widespread dissemination of a norA-overexpressing, meticillin-resistant S. aureus (MRSA) clone. Clonal spread also played a role for spa type t008, mepA-overexpressing, meticillin-susceptible strains. An EtBr MIC of ≤12.5 μg/mL was highly specific (>90%) in identifying strains lacking MDR-EP gene overexpression.


Future Microbiology | 2013

Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics

Bryan D. Schindler; Pauline L. Jacinto; Glenn W. Kaatz

The emergence of multidrug-resistant Staphylococcus aureus coupled with a declining output of new antibiotic treatment options from the pharmaceutical industry is a growing worldwide healthcare problem. Multidrug efflux pumps are known to play a role in antibiotic and biocide resistance in S. aureus. These membrane transporters are capable of extruding drugs and other structurally unrelated compounds, hence decreasing intracellular concentration and increasing survival. Coadministration of efflux pump inhibitors (EPIs) with antibiotics that are pump substrates could increase intracellular drug levels, thus bringing renewed efficacy to existing antistaphylococcal agents. Numerous EPIs have been identified or synthesized over the past two decades; these include existing pharmacologic drugs, naturally occurring compounds, and synthetic derivatives thereof. This review describes the current progress in EPI development for use against S. aureus.


Journal of Medicinal Chemistry | 2016

Indole Based Weapons to Fight Antibiotic Resistance: A Structure–Activity Relationship Study

Susan Lepri; Federica Buonerba; Laura Goracci; Irene Velilla; Renzo Ruzziconi; Bryan D. Schindler; Susan M. Seo; Glenn W. Kaatz; Gabriele Cruciani

Antibiotic resistance represents a worldwide concern, especially regarding the outbreak of methicillin-resistant Staphylococcus aureus, a common cause for serious skin and soft tissues infections. A major contributor to Staphylococcus aureus antibiotic resistance is the NorA efflux pump, which is able to extrude selected antibacterial drugs and biocides from the membrane, lowering their effective concentrations. Thus, the inhibition of NorA represents a promising and challenging strategy that would allow recycling of substrate antimicrobial agents. Among NorA inhibitors, the indole scaffold proved particularly effective and suitable for further optimization. In this study, some unexplored modifications on the indole scaffold are proposed. In particular, for the first time, substitutions at the C5 and N1 positions have been designed to give 48 compounds, which were synthesized and tested against norA-overexpressing S. aureus. Among them, 4 compounds have NorA IC50 values lower than 5.0 μM proving to be good efflux pump inhibitor (EPI) candidates. In addition, preliminary data on their ADME (absorption, distribution, metabolism, and excretion) profile is reported.


International Journal of Antimicrobial Agents | 2013

A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus

Winnie Ka Po Shiu; John P. Malkinson; M. Mukhlesur Rahman; Jonathan Curry; Paul Stapleton; Mekala Gunaratnam; Stephen Neidle; Shazad Mushtaq; Marina Warner; David M. Livermore; Dimitrios Evangelopoulos; Chandrakala Basavannacharya; Sanjib Bhakta; Bryan D. Schindler; Susan M. Seo; David Coleman; Glenn W. Kaatz; Simon Gibbons

An in-depth evaluation was undertaken of a new antibacterial natural product (1) recently isolated and characterised from the plant Hypericum olympicum L. cf. uniflorum. Minimum inhibitory concentrations (MICs) were determined for a panel of bacteria, including: meticillin-resistant and -susceptible strains of Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus; vancomycin-resistant and -susceptible Enterococcus faecalis and Enterococcus faecium; penicillin-resistant and -susceptible Streptococcus pneumoniae; group A streptococci (Streptococcus pyogenes); and Clostridium difficile. MICs were 2-8 mg/L for most staphylococci and all enterococci, but were ≥16 mg/L for S. haemolyticus and were >32 mg/L for all species in the presence of blood. Compound 1 was also tested against Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium but was inactive. The MIC for Mycobacterium bovis BCG was 60 mg/L, and compound 1 inhibited the ATP-dependent Mycobacterium tuberculosis MurE ligase [50% inhibitory concentration (IC(50)) = 75 μM]. In a radiometric accumulation assay with a strain of S. aureus overexpressing the NorA multidrug efflux pump, the presence of compound 1 increased accumulation of (14)C-enoxacin in a concentration-dependent manner, implying inhibition of efflux. Only moderate cytotoxicity was observed, with IC50 values of 12.5, 10.5 and 8.9 μM against human breast, lung and fibroblast cell lines, respectively, highlighting the potential value of this chemotype as a new antibacterial agent and efflux pump inhibitor.


Nucleic Acids Research | 2014

Structural mechanism of transcription regulation of the Staphylococcus aureus multidrug efflux operon mepRA by the MarR family repressor MepR

Ivan Birukou; Susan M. Seo; Bryan D. Schindler; Glenn W. Kaatz; Richard G. Brennan

The multidrug efflux pump MepA is a major contributor to multidrug resistance in Staphylococcus aureus. MepR, a member of the multiple antibiotic resistance regulator (MarR) family, represses mepA and its own gene. Here, we report the structure of a MepR–mepR operator complex. Structural comparison of DNA-bound MepR with ‘induced’ apoMepR reveals the large conformational changes needed to allow the DNA-binding winged helix-turn-helix motifs to interact with the consecutive major and minor grooves of the GTTAG signature sequence. Intriguingly, MepR makes no hydrogen bonds to major groove nucleobases. Rather, recognition-helix residues Thr60, Gly61, Pro62 and Thr63 make sequence-specifying van der Waals contacts with the TTAG bases. Removing these contacts dramatically affects MepR–DNA binding activity. The wings insert into the flanking minor grooves, whereby residue Arg87, buttressed by Asp85, interacts with the O2 of T4 and O4′ ribosyl oxygens of A23 and T4. Mutating Asp85 and Arg87, both conserved throughout the MarR family, markedly affects MepR repressor activity. The His14′:Arg59 and Arg10′:His35:Phe108 interaction networks stabilize the DNA-binding conformation of MepR thereby contributing significantly to its high affinity binding. A structure-guided model of the MepR–mepA operator complex suggests that MepR dimers do not interact directly and cooperative binding is likely achieved by DNA-mediated allosteric effects.


Journal of Bacteriology | 2013

Mutagenesis and Modeling to Predict Structural and Functional Characteristics of the Staphylococcus aureus MepA Multidrug Efflux Pump

Bryan D. Schindler; Diixa Patel; Susan M. Seo; Glenn W. Kaatz

MepA is a multidrug and toxin extrusion (MATE) family protein and the only MATE protein encoded within the Staphylococcus aureus genome. Structural data for MATE proteins are limited to a single high-resolution example, NorM of Vibrio cholerae. Substitution mutations were created in MepA using gradient plates containing both a substrate and reserpine as an efflux pump inhibitor. Site-directed mutagenesis of plasmid-based mepA was used to reproduce these mutations, as well as unique or low-frequency mutations identified in mepA-overexpressing clinical strains, and to mutagenize conserved acidic residues. The effect of these changes on protein function was quantitated in a norA-disrupted host strain by susceptibility testing with and without inhibitors and by determining the proficiency of ethidium efflux. Up-function substitutions clustered in the carboxy half of MepA, near the cytoplasmic face of the protein. Repeated application of the same gradient plate conditions frequently reproduced identical substitution mutations, suggesting that individual residues are required for interaction with specific substrates. Acidic residues critical to protein function were identified in helices 4 and 5. In silico modeling revealed an outward-facing molecule, with helices 1, 2, 4, 7, 8, and 10 having contact with a central cavity that may represent a substrate translocation pathway. Functionally important residues within this cavity included S81, A161, M291, and A302. These data provide a critical starting point for understanding how MATE multidrug efflux proteins function and will be useful in refining crystallographic data when they are available.


Mbio | 2013

The Molecular Mechanisms of Allosteric Mutations Impairing MepR Repressor Function in Multidrug-Resistant Strains of Staphylococcus aureus

Ivan Birukou; Nam K. Tonthat; Susan M. Seo; Bryan D. Schindler; Glenn W. Kaatz; Richard G. Brennan

ABSTRACT Overexpression of the Staphylococcus aureus multidrug efflux pump MepA confers resistance to a wide variety of antimicrobials. mepA expression is controlled by MarR family member MepR, which represses mepA and autorepresses its own production. Mutations in mepR are a primary cause of mepA overexpression in clinical isolates of multidrug-resistant S. aureus. Here, we report crystal structures of three multidrug-resistant MepR variants, which contain the single-amino-acid substitution A103V, F27L, or Q18P, and wild-type MepR in its DNA-bound conformation. Although each mutation impairs MepR function by decreasing its DNA binding affinity, none is located in the DNA binding domain. Rather, all are found in the linker region connecting the dimerization and DNA binding domains. Specifically, the A103V substitution impinges on F27, which resolves potential steric clashes via displacement of the DNA binding winged-helix-turn-helix motifs that lead to a 27-fold reduction in DNA binding affinity. The F27L substitution forces F104 into an alternative rotamer, which kinks helix 5, thereby interfering with the positioning of the DNA binding domains and decreasing mepR operator affinity by 35-fold. The Q18P mutation affects the MepR structure and function most significantly by either creating kinks in the middle of helix 1 or completely unfolding its C terminus. In addition, helix 5 of Q18P is either bent or completely dissected into two smaller helices. Consequently, DNA binding is diminished by 2,000-fold. Our structural studies reveal heretofore-unobserved allosteric mechanisms that affect repressor function of a MarR family member and result in multidrug-resistant Staphylococcus aureus. IMPORTANCE Staphylococcus aureus is a major health threat to immunocompromised patients. S. aureus multidrug-resistant variants that overexpress the multidrug efflux pump mepA emerge frequently due to point mutations in MarR family member MepR, the mepA transcription repressor. Significantly, the majority of MepR mutations identified in these S. aureus clinical isolates are found not in the DNA binding domain but rather in a linker region, connecting the dimerization and DNA binding domains. The location of these mutants underscores the critical importance of a properly functioning allosteric mechanism that regulates MepR function. Understanding the dysregulation of such allosteric MepR mutants underlies this study. The high-resolution structures of three such allosteric MepR mutants reveal unpredictable conformational consequences, all of which preclude cognate DNA binding, while biochemical studies emphasize their debilitating effects on DNA binding affinity. Hence, mutations in the linker region of MepR and their structural consequences are key generators of multidrug-resistant Staphylococcus aureus. Staphylococcus aureus is a major health threat to immunocompromised patients. S. aureus multidrug-resistant variants that overexpress the multidrug efflux pump mepA emerge frequently due to point mutations in MarR family member MepR, the mepA transcription repressor. Significantly, the majority of MepR mutations identified in these S. aureus clinical isolates are found not in the DNA binding domain but rather in a linker region, connecting the dimerization and DNA binding domains. The location of these mutants underscores the critical importance of a properly functioning allosteric mechanism that regulates MepR function. Understanding the dysregulation of such allosteric MepR mutants underlies this study. The high-resolution structures of three such allosteric MepR mutants reveal unpredictable conformational consequences, all of which preclude cognate DNA binding, while biochemical studies emphasize their debilitating effects on DNA binding affinity. Hence, mutations in the linker region of MepR and their structural consequences are key generators of multidrug-resistant Staphylococcus aureus.


Journal of Bacteriology | 2013

Functional Consequences of Substitution Mutations in MepR, a Repressor of the Staphylococcus aureus mepA Multidrug Efflux Pump Gene

Bryan D. Schindler; Susan M. Seo; Pauline L. Jacinto; Muthiah Kumaraswami; Ivan Birukou; Richard G. Brennan; Glenn W. Kaatz

The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. MepR dimers bind differently to operators upstream of mepR and mepA, with affinity being greatest at the mepA operator. MepR substitution mutations may result in mepA overexpression, with A103V most common in clinical strains. Evaluation of the functional consequences of this and other MepR substitutions using a lacZ reporter gene assay revealed markedly reduced repressor activity in the presence of Q18P, F27L, G97E, and A103V substitutions. Reporter data were generally supported by susceptibility and efflux assays, and electrophoretic mobility shift assays (EMSAs) confirmed compromised affinities of MepR F27L and A103V for the mepR and mepA operators. One mutant protein contained two substitutions (T94P and T132M); T132M compensated for the functional defect incurred by T94P and also rescued that of A103V but not F27L, establishing it as a limited-range suppressor. The function of another derivative with 10 substitutions was minimally affected, and this may be an extreme example of suppression involving interactions among several residues. Structural correlations for the observed functional effects were ascertained by modeling mutations onto apo-MepR. It is likely that F27L and A103V affect the protein-DNA interaction by repositioning of DNA recognition helices. Negative functional consequences of MepR substitution mutations may result from interference with structural plasticity, alteration of helical arrangements, reduced protein-cognate DNA affinity, or possibly association of MepR protomers. Structural determinations will provide further insight into the consequences of these and other mutations that affect MepR function, especially the T132M suppressor.


PLOS ONE | 2015

A Mass Spectrometry-Based Assay for Improved Quantitative Measurements of Efflux Pump Inhibition

Adam R. Brown; Keivan A. Ettefagh; Daniel A. Todd; Patrick S. Cole; Joseph M. Egan; Daniel H. Foil; Tyler N. Graf; Bryan D. Schindler; Glenn W. Kaatz; Nadja B. Cech

Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.


Antimicrobial Agents and Chemotherapy | 2015

Analyses of Multidrug Efflux Pump-Like Proteins Encoded on the Staphylococcus aureus Chromosome

Bryan D. Schindler; Emmanuel Frempong-Manso; Carmen E. DeMarco; Christos Kosmidis; Varun Matta; Susan M. Seo; Glenn W. Kaatz

Drug resistance is a therapeutic challenge in Staphylococcus aureus infections, and efflux is an important component of it. The activity of efflux proteins (pumps) can reduce susceptibility to important antimicrobial agents, predispose the bacterium to target-based mutations, enhance environmental

Collaboration


Dive into the Bryan D. Schindler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge