Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan J. Taylor is active.

Publication


Featured researches published by Bryan J. Taylor.


Journal of Applied Physiology | 2008

Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans

Bryan J. Taylor; Lee M. Romer

High-intensity exercise (> or =90% of maximal O(2) uptake) sustained to the limit of tolerance elicits expiratory muscle fatigue (EMF). We asked whether prior EMF affects subsequent exercise tolerance. Eight male subjects (means +/- SD; maximal O(2) uptake = 53.5 +/- 5.2 ml.kg(-1).min(-1)) cycled at 90% of peak power output to the limit of tolerance with (EMF-EX) and without (CON-EX) prior induction of EMF and for a time equal to that achieved in EMF-EX but without prior induction of EMF (ISO-EX). To induce EMF, subjects breathed against an expiratory flow resistor until task failure (15 breaths/min, 0.7 expiratory duty cycle, 40% of maximal expiratory gastric pressure). Fatigue of abdominal and quadriceps muscles was assessed by measuring the reduction relative to prior baseline values in magnetically evoked gastric twitch pressure (Pga(tw)) and quadriceps twitch force (Q(tw)), respectively. The reduction in Pga(tw) was not different after resistive breathing vs. after CON-EX (-27 +/- 5 vs. -26 +/- 6%; P = 0.127). Exercise time was reduced by 33 +/- 10% in EMF-EX vs. CON-EX (6.85 +/- 2.88 vs. 9.90 +/- 2.94 min; P < 0.001). Exercise-induced abdominal and quadriceps muscle fatigue was greater after EMF-EX than after ISO-EX (-28 +/- 9 vs. -12 +/- 5% for Pga(tw), P = 0.001; -28 +/- 7 vs. -14 +/- 6% for Q(tw), P = 0.015). Perceptual ratings of dyspnea and leg discomfort (Borg CR10) were higher at 1 and 3 min and at end exercise during EMF-EX vs. during ISO-EX (P < 0.05). Percent changes in limb fatigue and leg discomfort (EMF-EX vs. ISO-EX) correlated significantly with the change in exercise time. We propose that EMF impaired subsequent exercise tolerance primarily through an increased severity of limb locomotor muscle fatigue and a heightened perception of leg discomfort.


Seminars in Respiratory and Critical Care Medicine | 2010

The pulmonary circulation and exercise responses in the elderly.

Bryan J. Taylor; Bruce D. Johnson

Aging is associated with a progressive deterioration in the structure and function of the pulmonary circulation. Remodeling of the pulmonary vasculature occurs from maturity to senescence that is characterized by an increase in pulmonary vascular stiffness, pulmonary vascular pressures, and pulmonary vascular resistance along with increased heterogeneity of alveolar ventilation and pulmonary perfusion and decreased pulmonary capillary blood volume and membrane diffusing capacity that is consistent with a reduction in alveolar-capillary surface area. In theory, the aforementioned age-related changes in the pulmonary circulation may conspire to make elderly individuals more susceptible to gas exchange abnormalities during exercise. However, despite the erosion in ventilatory reserve with aging, the healthy older adult appears able to maintain alveolar ventilation at a level that allows maintenance of arterial blood gases within normal limits, even during heavy exercise. This ability to maintain adequate gas exchange likely occurs because age-related reductions in the maximal metabolic demand of exercise occur at a rate equal to or greater than the rate of deterioration in ventilatory reserve. A more prominent aspect of aging is the loss of lung elastic recoil that is associated with a modest reduction in the expiratory boundary of the maximal flow-volume envelope. This in turn increases the severity of expiratory airflow limitation and induces dynamic lung hyperinflation during exercise. The consequences of this age-associated decrease in elastic recoil on the pulmonary circulation are speculative, but an age-associated decline in elastic recoil may influence pulmonary vascular resistance and cardiac output, in addition to its impact on the work and oxygen cost of breathing.


Journal of Heart and Lung Transplantation | 2011

The usefulness of submaximal exercise gas exchange to define pulmonary arterial hypertension

Paul R. Woods; Robert P. Frantz; Bryan J. Taylor; Thomas P. Olson; Bruce D. Johnson

BACKGROUND The 6-minute walk test is widely used to characterize activity tolerance and response to therapy in pulmonary arterial hypertension (PAH) but provides little information about cardiopulmonary pathophysiology. The aim of the present study was to determine whether measures of pulmonary gas exchange during relatively light exercise could differentiate between PAH patients and healthy individuals and also stratify disease severity. METHODS The study comprised 40 PAH patients and 25 matched controls. Each completed a sub-maximal exercise test, consisting of 2 minutes of rest, 3 minutes of exercise, and 1 minute of recovery. Ventilation, pulmonary gas exchange, arterial oxygen saturation (Sao(2)), and heart rate were measured throughout using a simplified gas analysis system. RESULTS A number of gas exchange variables differentiated PAH patients and controls. End-tidal CO(2) (P(ET)co(2)) and Sao(2) were lower in PAH vs controls (31 ± 7 vs 39 ± 3 mm Hg and 89% ± 5% vs 95% ± 2%, respectively, p < 0.05). Breathing efficiency (V(E)/Vco(2) ratio) was poorer in PAH vs controls (42 ± 10 vs 33 ± 5, p < 0.05). In addition, P(ET)co(2) and V(E)/Vco(2) discriminated between different severities of PAH. CONCLUSIONS Gas exchange variables obtained during light sub-maximal exercise differentiated PAH patients from healthy controls and also between different severities of PAH. Sub-maximal exercise gas exchange may be a useful end point measure in a PAH population.


Journal of Applied Physiology | 2012

Comments on Point: Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia.

Olivier Girard; Michael S. Koehle; Martin J. MacInnis; Jordan A. Guenette; Samuel Verges; Thomas Rupp; Marc Jubeau; Stéphane Perrey; Guillaume Y. Millet; Robert F. Chapman; Benjamin D. Levine; Johnny Conkin; James H. Wessel; Hugo Nespoulet; Bernard Wuyam; Renaud Tamisier; Patrick Levy; Darren P. Casey; Bryan J. Taylor; Eric M. Snyder; Bruce D. Johnson; Abigail S. Laymon; Jonathon L. Stickford; Joshua C. Weavil; Jack A. Loeppky; Matiram Pun; Kai Schommer; Peter Bärtsch; Mary C. Vagula; Charles F. Nelatury

112:1788-1794, 2012. ; J Appl Physiol Joshua C. Weavil, Peter Bartsch and Charles F. Nelatury Samuel Verges, Patrick Levy, Eric M. Snyder, Bruce D. Johnson, Jonathon L. Stickford, Y. Millet, Benjamin D. Levine, James H. Wessel III, Bernard Wuyam, Renaud Tamisier, MacInnis, Michael S. Koehle, Thomas Rupp, Marc Jubeau, Stephane Perrey, Guillaume Laymon, Jack A. Loeppky, Matiram Pun, Kai Schommer, Mary C. Vagula, Martin J. S. Chapman, Johnny Conkin, Hugo Nespoulet, Darren P. Casey, Bryan J. Taylor, Abigail Olivier Girard, Michael S. Koehle, Jordan A. Guenette, Samuel Verges, Robert F. normobaric hypoxia induces/does not induce different responses from Comments on Point:Counterpoint: Hypobaric hypoxia


Journal of Applied Physiology | 2010

No effect of arm-crank exercise on diaphragmatic fatigue or ventilatory constraint in Paralympic athletes with cervical spinal cord injury.

Bryan J. Taylor; Christopher R. West; Lee M. Romer

Cervical spinal cord injury (CSCI) results in a decrease in the capacity of the lungs and chest wall for pressure, volume, and airflow generation. We asked whether such impairments might increase the potential for exercise-induced diaphragmatic fatigue and mechanical ventilatory constraint in this population. Seven Paralympic wheelchair rugby players (mean + or - SD peak oxygen uptake = 16.9 + or - 4.9 ml x kg(-1) x min(-1)) with traumatic CSCI (C(5)-C(7)) performed arm-crank exercise to the limit of tolerance at 90% of their predetermined peak work rate. Diaphragm function was assessed before and 15 and 30 min after exercise by measuring the twitch transdiaphragmatic pressure (P(di,tw)) response to bilateral anterolateral magnetic stimulation of the phrenic nerves. Ventilatory constraint was assessed by measuring the tidal flow volume responses to exercise in relation to the maximal flow volume envelope. P(di,tw) was not different from baseline at any time after exercise (unpotentiated P(di,tw) = 19.3 + or - 5.6 cmH(2)O at baseline, 19.8 + or - 5.0 cmH(2)O at 15 min after exercise, and 19.4 + or - 5.7 cmH(2)O at 30 min after exercise; P = 0.16). During exercise, there was a sudden, sustained rise in operating lung volumes and an eightfold increase in the work of breathing. However, only two subjects showed expiratory flow limitation, and there was substantial capacity to increase both flow and volume (<50% of maximal breathing reserve). In conclusion, highly trained athletes with CSCI do not develop exercise-induced diaphragmatic fatigue and rarely reach mechanical ventilatory constraint.


Scandinavian Journal of Medicine & Science in Sports | 2014

Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury

Christopher R. West; Bryan J. Taylor; Ian G. Campbell; Lee M. Romer

We asked whether specific inspiratory muscle training (IMT) improves respiratory structure and function and peak exercise responses in highly trained athletes with cervical spinal cord injury (SCI). Ten Paralympic wheelchair rugby players with motor‐complete SCI (C5‐C7) were paired by functional classification then randomly assigned to an IMT or placebo group. Diaphragm thickness (B‐mode ultrasonography), respiratory function [spirometry and maximum static inspiratory (PI,max) and expiratory (PE,max) pressures], chronic activity‐related dyspnea (Baseline and Transition Dyspnea Indices), and physiological responses to incremental arm‐crank exercise were assessed before and after 6 weeks of pressure threshold IMT or sham bronchodilator treatment. Compared to placebo, the IMT group showed significant increases in diaphragm thickness (P = 0.001) and PI,max (P = 0.016). There was a significant increase in tidal volume at peak exercise in IMT vs placebo (P = 0.048) and a strong trend toward an increase in peak work rate (P = 0.081, partial eta‐squared = 0.33) and peak oxygen uptake (P = 0.077, partial eta‐squared = 0.34). No other indices changed post‐intervention. In conclusion, IMT resulted in significant diaphragmatic hypertrophy and increased inspiratory muscle strength in highly trained athletes with cervical SCI. The strong trend, with large observed effect, toward an increase in peak aerobic performance suggests IMT may provide a useful adjunct to training in this population.


Respiratory Physiology & Neurobiology | 2007

Acute and chronic responses of the upper airway to inspiratory loading in healthy awake humans: An MRI study

Stephen C. How; Alison McConnell; Bryan J. Taylor; Lee M. Romer

We assessed upper airway responses to acute and chronic inspiratory loading. In Experiment I, 11 healthy subjects underwent T(2)-weighted magnetic resonance imaging (MRI) of upper airway dilator muscles (genioglossus and geniohyoid) before and up to 10 min after a single bout of pressure threshold inspiratory muscle training (IMT) at 60% maximal inspiratory mouth pressure (MIP). T(2) values for genioglossus and geniohyoid were increased versus control (p<0.001), suggesting that these airway dilator muscles are activated in response to acute IMT. In Experiment II, nine subjects underwent 2D-Flash sequence MRI of the upper airway during quiet breathing and while performing single inspirations against resistive loads (10%, 30% and 50% MIP); this procedure was repeated after 6 weeks of IMT. Lateral narrowing of the upper airway occurred at all loads, whilst anteroposterior narrowing occurred at the level of the laryngopharynx at loads > or =30% MIP. Changes in upper airway morphology and narrowing after IMT were undetectable using MRI.


Respiratory Physiology & Neurobiology | 2009

Effect of expiratory resistive loading on inspiratory and expiratory muscle fatigue

Bryan J. Taylor; Lee M. Romer

Inspiratory and expiratory pressures are increased during expiratory resistive loading (ERL). We asked whether ERL elicits inspiratory as well as expiratory muscle fatigue. On four separate days, seven male subjects underwent ERL to task failure. Subjects maintained respiratory frequency at 15 breaths min(-1), expiratory gastric pressure at 40% or 60% of maximum, and expiratory duty cycle at 0.4 or 0.7 (ERL(40%0.4), ERL(40%0.7), ERL(60%0.4), ERL(60%0.7)). Inspiratory and abdominal muscle contractility was assessed before and up to 30 min after ERL by measuring transdiaphragmatic twitch pressure (P(di,tw)) and gastric twitch pressure (P(ga,tw)) in response to magnetic nerve stimulation. After each trial, P(di,tw) and P(ga,tw) were reduced below baseline values (-9 to -15% for P(di,tw) and -15 to -22% for P(ga,tw); P<0.05). The severity of diaphragm fatigue was unaffected by expiratory pressure production or expiratory duty cycle, whereas extending the expiratory duty cycle increased the severity of abdominal muscle fatigue. In conclusion, ERL elicits contractile fatigue of the diaphragm and the abdominal muscles.


Respiratory Physiology & Neurobiology | 2014

Exercise-induced interstitial pulmonary edema at sea-level in young and old healthy humans

Bryan J. Taylor; Alex R. Carlson; Andrew D. Miller; Bruce D. Johnson

We asked whether aged adults are more susceptible to exercise-induced pulmonary edema relative to younger individuals. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm) and pulmonary-capillary blood volume (Vc) were measured before and after exhaustive discontinuous incremental exercise in 10 young (YNG; 27±3 years) and 10 old (OLD; 69±5 years) males. In YNG subjects, Dm increased (11±7%, P=0.031), Vc decreased (-10±9%, P=0.01) and DLCO was unchanged (30.5±4.1 vs. 29.7±2.9mL/min/mmHg, P=0.44) pre- to post-exercise. In OLD subjects, DLCO and Dm increased (11±14%, P=0.042; 16±14%, P=0.025) but Vc was unchanged (58±23 vs. 56±23mL, P=0.570) pre- to post-exercise. Group-mean Dm/Vc was greater after vs. before exercise in the YNG and OLD subjects. However, Dm/Vc was lower post-exercise in 2 of the 10 YNG (-7±4%) and 2 of the 10 OLD subjects (-10±5%). These data suggest that exercise decreases interstitial lung fluid in most YNG and OLD subjects, with a small number exhibiting evidence for exercise-induced pulmonary edema.


Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine | 2013

Use of Noninvasive Gas Exchange to Track Pulmonary Vascular Responses to Exercise in Heart Failure

Bryan J. Taylor; Thomas P. Olson; Chul-Ho-Kim; Dean MacCarter; Bruce D. Johnson

We determined whether a non-invasive gas exchange based estimate of pulmonary vascular (PV) capacitance [PVCAP = stroke volume (SV) x pulmonary arterial pressure (Ppa)] (GXCAP) tracked the PV response to exercise in heart-failure (HF) patients. Pulmonary wedge pressure (Ppw), Ppa, PV resistance (PVR), and gas exchange were measured simultaneously during cycle exercise in 42 HF patients undergoing right-heart catheterization. During exercise, PETCO2 and VE/VCO2 were related to each other (r= -0.93, P < 0.01) and similarly related to mean Ppa (mPpa) (r = -0.39 and 0.36; P < 0.05); PETCO2 was subsequently used as a metric of mPpa. Oxygen pulse (O2 pulse) tracked the SV response to exercise (r = 0.91, P < 0.01). Thus, GXCAP was calculated as O2 pulse x PETCO2. During exercise, invasively determined PVCAP and non-invasive GXCAP were related (r = 0.86, P < 0.01), and GXCAP correlated with mPpa and PVR (r = -0.46 and -0.54; P < 0.01). In conclusion, noninvasive gas exchange measures may represent a simple way to track the PV response to exercise in HF.

Collaboration


Dive into the Bryan J. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee M. Romer

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge