Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan W. Brooks is active.

Publication


Featured researches published by Bryan W. Brooks.


Environmental Health Perspectives | 2012

Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?

Alistair B.A. Boxall; Murray A. Rudd; Bryan W. Brooks; Daniel J. Caldwell; Kyungho Choi; Silke Hickmann; Elizabeth Innes; Kim Ostapyk; Jane Staveley; Tim Verslycke; Gerald T. Ankley; Karen Beazley; Scott E. Belanger; Jason P. Berninger; Pedro Carriquiriborde; Anja Coors; Paul C. DeLeo; Scott D. Dyer; Jon F. Ericson; F. Gagné; John P. Giesy; Todd Gouin; Lars Hallstrom; Maja V. Karlsson; D. G. Joakim Larsson; James M. Lazorchak; Frank Mastrocco; Alison McLaughlin; Mark E. McMaster; Roger D. Meyerhoff

Background: Over the past 10–15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment. Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas. Data sources: To better understand and manage the risks of PPCPs in the environment, we used the “key question” approach to identify the principle issues that need to be addressed. Initially, questions were solicited from academic, government, and business communities around the world. A list of 101 questions was then discussed at an international expert workshop, and a top-20 list was developed. Following the workshop, workshop attendees ranked the 20 questions by importance. Data synthesis: The top 20 priority questions fell into seven categories: a) prioritization of substances for assessment, b) pathways of exposure, c) bioavailability and uptake, d) effects characterization, e) risk and relative risk, f ) antibiotic resistance, and g) risk management. Conclusions: A large body of information is now available on PPCPs in the environment. This exercise prioritized the most critical questions to aid in development of future research programs on the topic.


Environmental Toxicology and Chemistry | 2005

Determination of select antidepressants in fish from an effluent‐dominated stream

Bryan W. Brooks; C. Kevin Chambliss; Jacob K. Stanley; Alejandro J. Ramirez; Kenneth E. Banks; Robert D. Johnson; Russell J. Lewis

Increasing evidence indicates widespread occurrence of pharmaceuticals and personal care products (PPCPs) in municipal effluent discharges and surface waters. Studies that characterize the fate and effects of PPCPs in aquatic systems are limited, and to our knowledge, data regarding pharmaceutical accumulation in fish of effluent-dominated ecosystems have not been previously reported. In the present study, fish populations were sampled from a reference stream and an effluent-dominated stream in north Texas, USA. Lepomis macrochirus, Ictalurus punctatus, Cyprinus carpio, and Pomoxis nigromaculatus were killed; the liver, brain, and lateral filet tissues dissected; and the tissues stored at -80 degrees C until analysis. Fish tissues were extracted using solid-phase extraction and then analyzed by gas chromatography-mass spectrometry in the negative chemical ionization mode. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and the SSRI metabolites norfluoxetine and desmethylsertraline were detected at levels greater than 0.1 ng/g in all tissues examined from fish residing in a municipal effluent-dominated stream. To our knowledge, the present study is the first report of SSRI residues in fish residing within municipal effluent-dominated systems.


Environmental Toxicology and Chemistry | 2009

Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the united states

Alejandro J. Ramirez; Richard A. Brain; Sascha Usenko; Mohammad A. Mottaleb; John G. O'Donnell; Leanne L. Stahl; John B. Wathen; Blaine D. Snyder; Jennifer L. Pitt; Pilar Perez‐Hurtado; Laura L. Dobbins; Bryan W. Brooks; C. Kevin Chambliss

Pharmaceuticals and personal care products are being increasingly reported in a variety of biological matrices, including fish tissue; however, screening studies have presently not encompassed broad geographical areas. A national pilot study was initiated in the United States to assess the accumulation of pharmaceuticals and personal care products in fish sampled from five effluent-dominated rivers that receive direct discharge from wastewater treatment facilities in Chicago, Illinois; Dallas, Texas; Orlando, Florida; Phoenix, Arizona; and West Chester, Pennsylvania, USA. Fish were also collected from the Gila River, New Mexico, USA, as a reference condition expected to be minimally impacted by anthropogenic influence. High performance liquid chromatography-tandem mass spectrometry analysis of pharmaceuticals revealed the presence of norfluoxetine, sertraline, diphenhydramine, diltiazem, and carbamazepine at nanogram-per-gram concentrations in fillet composites from effluent-dominated sampling locations; the additional presence of fluoxetine and gemfibrozil was confirmed in liver tissue. Sertraline was detected at concentrations as high as 19 and 545 ng/g in fillet and liver tissue, respectively. Gas chromatography-tandem mass spectrometry analysis of personal care products in fillet composites revealed the presence of galaxolide and tonalide at maximum concentrations of 2,100 and 290 ng/g, respectively, and trace levels of triclosan. In general, more pharmaceuticals were detected at higher concentrations and with greater frequency in liver than in fillet tissues. Higher lipid content in liver tissue could not account for this discrepancy as no significant positive correlations were found between accumulated pharmaceutical concentrations and lipid content for either tissue type from any sampling site. In contrast, accumulation of the personal care products galaxolide and tonalide was significantly related to lipid content. Results suggest that the detection of pharmaceuticals and personal care products was dependent on the degree of wastewater treatment employed.


Toxicology Letters | 2003

Aquatic ecotoxicology of fluoxetine.

Bryan W. Brooks; Christy M. Foran; Sean M. Richards; James Weston; Philip K. Turner; Jacob K. Stanley; Keith R. Solomon; Marc Slattery; Thomas W. La Point

Recent studies indicate that the pharmaceutical fluoxetine, a selective serotonin reuptake inhibitor, is discharged in municipal wastewater treatment plant effluents to surface waters. Few data on environmental fluoxetine exposure and hazard to aquatic life are currently available in the literature. Here, we summarize information on fluoxetine detection in surface waters and review research on single-species toxicity test, Japanese medaka (Oryzias latipes) reproduction and endocrine function, and freshwater mesocosm community responses to fluoxetine exposure. Based on results from our studies and calculations of expected introduction concentrations, we also provide a preliminary aquatic risk characterization for fluoxetine. If standard toxicity test responses and a hazard quotient risk characterization approach are solely considered, little risk of fluoxetine exposure may be expected to aquatic life. However, our findings indicate that: (1) the magnitude, duration and frequency of fluoxetine exposure in aquatic systems requires further investigation; (2) mechanistic toxicity of fluoxetine in non-target biota, including behavioral responses, are clearly not understood; and (3) an assessment of environmentally relevant fluoxetine concentrations is needed to characterize ecological community responses.


Hydrobiologia | 2006

Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations

Bryan W. Brooks; Timothy M. Riley; Ritchie D Taylor

In arid and semi-arid regions of the southwestern United States and other parts of the world, flows of historically ephemeral streams are now perennially dominated by municipal and/or industrial effluent discharges, particularly in urbanized watersheds. Because effluent-dominated and dependent water bodies have previously received limited scientific study, we reviewed select contemporary topics associated with water quality of ephemeral streams receiving effluent flows. Our findings indicate that these ecosystems present numerous challenges to aquatic scientists and water resources managers, including: 1) appropriate ecosystems or upstream conditions used reference sites in biomonitoring are difficult to locate or do not exist; 2) water quality criteria, particularly for metals, are dramatically influenced by unique site-specific stream and land use conditions; 3) effluent-dominated streams represent worse-case scenarios for evaluating and predicting aquatic responses to emerging contaminants (e.g., pharmaceuticals and personal care products); 4) low-flow and drought conditions often preclude effective biomonitoring and water quality interpretation, or skew ambient assessment results; 5) chemical-physical water quality parameters (e.g., dissolved oxygen, conductivity, temperature) are dramatically altered by effluent and stormwater characteristics; and 6) beneficial reuse of reclaimed effluent waters potentially conflict with sustainability of ecological integrity. Subsequently, we recommend several water quality research priorities for effluentdominated water bodies.


Chemosphere | 2003

Waterborne and sediment toxicity of fluoxetine to select organisms

Bryan W. Brooks; Philip K. Turner; Jacob K. Stanley; James Weston; Elizabeth A. Glidewell; Christy M. Foran; Marc Slattery; Thomas W. La Point; Duane B. Huggett

Ecological risk assessments of pharmaceuticals are currently difficult because little-to-no aquatic hazard and exposure information exists in the peer-reviewed literature for most therapeutics. Recently several studies have identified fluoxetine, a widely prescribed antidepressant, in municipal effluents. To evaluate the potential aquatic toxicity of fluoxetine, single species laboratory toxicity tests were performed to assess hazard to aquatic biota. Average LC(50) values for Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas were 0.756 (234 microg/l), 2.65 (820 microg/l), and 2.28 microM (705 microg/l), respectively. Pseudokirchneriella subcapitata growth and C. dubia fecundity were decreased by 0.044 (14 microg/l) and 0.72 microM (223 microg/l) fluoxetine treatments, respectively. Oryias latipes survival was not affected by fluoxteine exposure up to a concentration of 28.9 microM (8.9 mg/l). An LC(50) of 15.2 mg/kg was estimated for Chironomus tentans. Hyalella azteca survival was not affected up to 43 mg/kg fluoxetine sediment exposure. Growth lowest observed effect concentrations for C. tentans and H. azteca were 1.3 and 5.6 mg/kg, respectively. Our findings indicate that lowest measured fluoxetine effect levels are an order of magnitude higher than highest reported municipal effluent concentrations.


Science of The Total Environment | 2014

Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent.

Bowen Du; Amy E. Price; W. Casan Scott; Lauren A. Kristofco; Alejandro J. Ramirez; C. Kevin Chambliss; Joe C. Yelderman; Bryan W. Brooks

A comparative understanding of effluent quality of decentralized on-site wastewater treatment systems, particularly for contaminants of emerging concern (CECs), remains less understood than effluent quality from centralized municipal wastewater treatment plants. Using a novel experimental facility with common influent wastewater, effluent water quality from a decentralized advanced aerobic treatment system (ATS) and a typical septic treatment system (STS) coupled to a subsurface flow constructed wetland (WET) were compared to effluent from a centralized municipal treatment plant (MTP). The STS did not include soil treatment, which may represent a system not functioning properly. Occurrence and discharge of a range of CECs were examined using isotope dilution liquid chromatography-tandem mass spectrometry during fall and winter seasons. Conventional parameters, including total suspended solids, carbonaceous biochemical oxygen demand and nutrients were also evaluated from each treatment system. Water quality of these effluents was further examined using a therapeutic hazard modeling approach. Of 19 CECs targeted for study, the benzodiazepine pharmaceutical diazepam was the only CEC not detected in all wastewater influent and effluent samples over two sampling seasons. Diphenhydramine, codeine, diltiazem, atenolol, and diclofenac exhibited significant (p<0.05) seasonal differences in wastewater influent concentrations. Removal of CECs by these wastewater treatment systems was generally not influenced by season. However, significant differences (p<0.05) for a range of water quality indicators were observed among the various treatment technologies. For example, removal of most CECs by ATS was generally comparable to MTP. Lowest removal of most CECs was observed for STS; however, removal was improved when coupling the STS to a WET. Across the treatment systems examined, the majority of pharmaceuticals observed in on-site and municipal effluent discharges were predicted to potentially present therapeutic hazards to fish.


Environmental Science & Technology | 2011

Fate of sucralose through environmental and water treatment processes and impact on plant indicator species.

Lindsay Soh; Kristin A. Connors; Bryan W. Brooks; Julie B. Zimmerman

The degradation and partitioning of sucralose during exposure to a variety of environmental and advanced treatment processes (ATP) and the effect of sucralose on indicator plant species were systematically assessed. Bench scale experiments were used to reproduce conditions from environmental processes (microbial degradation, hydrolysis, soil sorption) and ATPs (chlorination, ozonation, sorption to activated carbon, and UV radiation). Degradation only occurred to a limited extent during hydrolysis, ozonation, and microbial processes indicating that breakdown of sucralose will likely be slow and incomplete leading to accumulation in surface waters. Further, the persistence of sucralose was compared to suggested human tracer compounds, caffeine and acesulfame-K. In comparison sucralose exhibits similar or enhanced characteristics pertaining to persistence, prevalence, and facile detection and can therefore be considered an ideal tracer for anthropogenic activity. Ecological effects of sucralose were assessed by measuring sucrose uptake inhibition in plant cotelydons and aquatic plant growth impairment. Sucralose did not inhibit plant cotelydon sucrose uptake, nor did it effect frond number, wet weight, or growth rate in aquatic plant, Lemna gibba. Though sucralose does not appear toxic to plant growth, the peristent qualities of sucralose may lead to chronic low-dose exposure with largely unknown consequences for human and environmental health.


Journal of Chromatography A | 2009

Gas chromatography-mass spectrometry screening methods for select UV filters, synthetic musks, alkylphenols, an antimicrobial agent, and an insect repellent in fish.

Mohammad A. Mottaleb; Sascha Usenko; John G. O’Donnell; Alejandro J. Ramirez; Bryan W. Brooks; C. Kevin Chambliss

Two screening methods have been developed for simultaneous determination of ten extensively used personal care products (PCPs) and two alkylphenol surfactants in fish. The methods consisted of extraction, clean-up, derivatization and analysis by gas chromatography-mass spectrometry with selected ion monitoring (GC-SIM-MS) or gas chromatography-tandem mass spectrometry (GC-MS/MS) techniques. Among solvents tested to assess recovery of target compounds from 1-g tissue homogenates, acetone was selected as optimal for extracting compounds with dissimilar physicochemical properties from fish tissue. Initial experiments confirmed that GC-SIM-MS could be applied for analysis of lean fillet tissue (<1% lipid) without gel-permeation chromatography (GPC), and this approach was applied to assess the presence of target analytes in fish fillets collected from a regional effluent-dominated stream in Texas, USA. Benzophenone, galaxolide, tonalide, and triclosan were detected in 11 of 11 environmental samples at concentrations ranging from; 37 to 90, 234 to 970, 26 to 97, and 17 to 31 ng/g, respectively. However, performance of this analytical approach declined appreciably with increasing lipid content of analyzed tissues. Successful analysis of samples with increased lipid content was enabled by adding GPC to the sample preparation protocol and monitoring analytes with tandem mass spectrometry. Both analytical approaches were validated using fortified fillet tissue collected from locations expected to be minimally impacted by anthropogenic influences. Average analyte recoveries ranged from 87% to 114% with RSDs <11% and from 54% to 107% with RSDs <20% for fish tissue containing <1% and 4.9% lipid, respectively. Statistically derived method detection limits (MDLs) for GC-SIM-MS and GC-MS/MS methodologies ranged from 2.4 to 16 ng/g, and 5.1 to 397 ng/g, respectively.


Environmental Toxicology and Chemistry | 2009

Pharmaceuticals and personal care products: Research needs for the next decade

Bryan W. Brooks; Duane B. Huggett; Alistair B.A. Boxall

Pharmaceuticals and personal care products (PPCPs) include numerous classes of chemicals with unique physiochemical properties and biological activities. Over the past decade research on the occurrence, fate, effects, risk assessment, and management of PPCPs in the environment has peaked. It is important to appreciate the utility of traditional approaches for examining contaminant hazard and risk while understanding relevant limitations and important research needs to advance environmental risk assessment (ERA) and management efforts for PPCPs. Spurred initially by the critical reviews of Halling-Sorensen et al. [1] (755 citations as of 6 July 2009) and Daughton and Ternes [2] (778 citations as of 6 July 2009), this special issue of Environmental Toxicology and Chemistry includes a timely collection of manuscripts examining the environmental chemistry, toxicology, risk assessment, and management of PPCPs.

Collaboration


Dive into the Bryan W. Brooks's collaboration.

Top Co-Authors

Avatar

James P. Grover

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob K. Stanley

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge