Bryan Wei
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bryan Wei.
Nature | 2012
Bryan Wei; Mingjie Dai; Peng Yin
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a ‘single-stranded tile’ (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands—folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles—acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.
Journal of the American Chemical Society | 2013
Sumedh P. Surwade; Feng Zhou; Bryan Wei; Wei Sun; Anna Powell; Christina O’Donnell; Peng Yin; Haitao Liu
We describe a method to form custom-shaped inorganic oxide nanostructures by using DNA nanostructure templates. We show that a DNA nanostructure can modulate the rate of chemical vapor deposition of SiO2 and TiO2 with nanometer-scale spatial resolution. The resulting oxide nanostructure inherits its shape from the DNA template. This method generates both positive-tone and negative-tone patterns on a wide range of substrates and is compatible with conventional silicon nanofabrication processes. Our result opens the door to the use of DNA nanostructures as general-purpose templates for high-resolution nanofabrication.
Nucleic Acids Research | 2009
Jinhao Zhu; Bryan Wei; Yuan Yuan; Yongli Mi
A user-friendly software system, UNIQUIMER 3D, was developed to design DNA structures for nanotechnology applications. It consists of 3D visualization, internal energy minimization, sequence generation and construction of motif array simulations (2D tiles and 3D lattices) functionalities. The system can be used to check structural deformation and design errors under scaled-up conditions. UNIQUIMER 3D has been tested on the design of both existing motifs (holiday junction, 4 × 4 tile, double crossover, DNA tetrahedron, DNA cube, etc.) and nonexisting motifs (soccer ball). The results demonstrated UNIQUIMER 3Ds capability in designing large complex structures. We also designed a de novo sequence generation algorithm. UNIQUIMER 3D was developed for the Windows environment and is provided free of charge to the nonprofit research institutions.
Journal of the American Chemical Society | 2013
Bryan Wei; Mingjie Dai; Cameron Myhrvold; Yonggang Ke; Ralf Jungmann; Peng Yin
Nucleic acids have emerged as effective materials for assembling complex nanoscale structures. To tailor the structures to function optimally for particular applications, a broad structural design space is desired. Despite the many discrete and extended structures demonstrated in the past few decades, the design space remains to be fully explored. In particular, the complex finite-sized structures produced to date have been typically based on a small number of structural motifs. Here, we perform a comprehensive study of the design space for complex DNA structures, using more than 30 distinct motifs derived from single-stranded tiles. These motifs self-assemble to form structures with diverse strand weaving patterns and specific geometric properties, such as curvature and twist. We performed a systematic study to control and characterize the curvature of the structures, and constructed a flat structure with a corrugated strand pattern. The work here reveals the broadness of the design space for complex DNA nanostructures.
Angewandte Chemie | 2014
Bryan Wei; Luvena L. Ong; Jeffrey Chen; Alexander S. Jaffe; Peng Yin
Nucleic acids have been used to create diverse synthetic structural and dynamic systems. Toehold-mediated strand displacement has enabled the construction of sophisticated circuits, motors, and molecular computers. Yet it remains challenging to demonstrate complex structural reconfiguration in which a structure changes from a starting shape to another arbitrarily prescribed shape. To address this challenge, we have developed a general structural-reconfiguration method that utilizes the modularly interconnected architecture of single-stranded DNA tile and brick structures. The removal of one component strand reveals a newly exposed toehold on a neighboring strand, thus enabling us to remove regions of connected component strands without the need to modify the strands with predesigned external toeholds. By using this method, we reconfigured a two-dimensional rectangular DNA canvas into diverse prescribed shapes. We also used this method to reconfigure a three-dimensional DNA cuboid.
Nucleic Acids Research | 2016
Wen Wang; Tong Lin; Suoyu Zhang; Tanxi Bai; Yongli Mi; Bryan Wei
DNA origami and single-stranded tile (SST) are two proven approaches to self-assemble finite-size complex DNA nanostructures. The construction elements appeared in structures from these two methods can also be found in multi-stranded DNA tiles such as double crossover tiles. Here we report the design and observation of four types of finite-size lattices with four different double crossover tiles, respectively, which, we believe, in terms of both complexity and robustness, will be rival to DNA origami and SST structures.
Nucleic Acids Research | 2017
Donglei Yang; Zhenyu Tan; Yongli Mi; Bryan Wei
Abstract Earlier studies in DNA self-assembly have foretold the feasibility of building addressable nanostructures with multi-stranded motifs, which is fully validated in this study. In realizing this feasibility in DNA nanotechnology, a diversified set of motifs of modified domain lengths is extended from a classic type. The length of sticky ends can be adjusted to form different dihedral angles between the matching motifs, which corresponds to different connecting patterns. Moreover, the length of rigidity core can also be tuned to result in different dihedral angles between the component helices of a certain motif therefore different numbers of component helices. The extended set of motifs is used for self-assembly of complex one dimensional, two dimensional and three dimensional structures.
Journal of Nanotechnology | 2008
Immensee Cheng; Bryan Wei; Xunyun Zhang; Yongjian Wang; Yongli Mi
We report a method of patterning the 1D and 2D arrays of gold nanoparticles on the DNA self-assembled scaffolds. The 5 nm gold nanoparticle was well positioned at the center of each 4×4 tile motif of the DNA scaffold. The precisely located gold particles can form 1D and 2D arrays. This controllable scaffolding technology may become a promising tool for nanoscaled fabrication of electronics and photonic devices.
Science Advances | 2017
Johannes B. Woehrstein; Maximilian T. Strauss; Luvena L. Ong; Bryan Wei; David Yu Zhang; Ralf Jungmann; Peng Yin
Programmable DNA-based metafluorophores allow simultaneous tagging and imaging with more than 100 virtual colors. Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target.
Journal of Visualized Experiments | 2015
Bryan Wei; Michelle K. Vhudzijena; Joanna Robaszewski; Peng Yin
Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.