Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryant C. Yung is active.

Publication


Featured researches published by Bryant C. Yung.


Chemical Reviews | 2017

Nanotechnology for Multimodal Synergistic Cancer Therapy

Wenpei Fan; Bryant C. Yung; Peng Huang; Xiaoyuan Chen

The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely 1 + 1 > 2) effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furthermore, the featured applications of multimodal synergistic therapy in overcoming tumor multidrug resistance, hypoxia, and metastasis will also be discussed in detail, which may provide new ways for the efficient regression and even elimination of drug resistant, hypoxic solid, or distant metastatic tumors. Finally, some design tips for multifunctional nanomaterials and an outlook on the future development of multimodal synergistic therapy will be provided, highlighting key scientific issues and technical challenges and requiring remediation to accelerate clinical translation.


ACS Nano | 2017

Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging

Zhen Yang; Rui Tian; Jinjun Wu; Quli Fan; Bryant C. Yung; Gang Niu; Orit Jacobson; Zhantong Wang; Gang Liu; Guocan Yu; Wei Huang; Jibin Song; Xiaoyuan Chen

Semiconducting molecules of perylene diimide (PDI) with strong light absorption properties in the near-infrared region and good biocompatibility have received increasing attention in the field of theranostics, especially as photoacoustic (PA) imaging agents. Herein, we report a series of [64Cu]-labeled PDI nanoparticles (NPs) of different sizes (30, 60, 100, and 200 nm) as dual positron emission tomography (PET) and PA imaging probes and photothermal therapy agents. The precise size control of the PDI NPs can be achieved by adjusting the initial concentration of PDI molecules in the self-assembly process, and the photophysical property of different sized PDI NPs was studied in detail. Furthermore, we systematically investigated the size-dependent accumulation of the PDI NPs in the lymphatic system after local administration and in tumors after intravenous injection by PA and PET imaging. The results revealed that 100 nm is the best size for differentiating popliteal and sciatic LNs since the interval is around 60 min for the NPs to migrate from popliteal LNs to sciatic LNs, which is an ideal time window to facilitate surgical sentinel LN biopsy and pathological examination. Furthermore, different migration times of the different-sized PDI NPs will provide more choices for surgeons to map the specific tumor relevant LNs. PDI NP theranostics can also be applied to imaging-guided cancer therapy. The NPs with a size of 60 nm appear to be the best for tumor imaging and photothermal cancer therapy due to the maximum tumor accumulation efficiency. Thus, our study not only presents organic PDI NP theranostics but also introduces different-sized NPs for multiple bioapplications.


ACS Nano | 2017

Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer

Xiaolin Huang; Yijing Liu; Bryant C. Yung; Yonghua Xiong; Xiaoyuan Chen

In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.


ACS Nano | 2017

Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy

Jibin Song; Xiangyu Yang; Zhen Yang; Lisen Lin; Yijing Liu; Zijian Zhou; Zheyu Shen; Guocan Yu; Yunlu Dai; Orit Jacobson; Jeeva Munasinghe; Bryant C. Yung; Gaojun Teng; Xiaoyuan Chen

Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au3+). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.


Nature Communications | 2018

Polyrotaxane-based supramolecular theranostics

Guocan Yu; Zhen Yang; Xiao Fu; Bryant C. Yung; Jie Yang; Zhengwei Mao; Li Shao; Bin Hua; Yijing Liu; Fuwu Zhang; Quli Fan; Sheng Wang; Orit Jacobson; Albert J. Jin; Changyou Gao; Xiaoying Tang; Feihe Huang; Xiaoyuan Chen

The development of smart theranostic systems with favourable biocompatibility, high loading efficiency, excellent circulation stability, potent anti-tumour activity, and multimodal diagnostic functionalities is of importance for future clinical application. The premature burst release and poor degradation kinetics indicative of polymer-based nanomedicines remain the major obstacles for clinical translation. Herein we prepare theranostic shell-crosslinked nanoparticles (SCNPs) using a β-cyclodextrin-based polyrotaxane (PDI-PCL-b-PEG-RGD⊃β-CD-NH2) to avoid premature drug leakage and achieve precisely controllable release, enhancing the maximum tolerated dose of the supramolecular nanomedicines. cRGDfK and perylene diimide are chosen as the stoppers of PDI-PCL-b-PEG-RGD⊃β-CD-NH2, endowing the resultant SCNPs with excellent integrin targeting ability, photothermal effect, and photoacoustic capability. In vivo anti-tumour studies demonstrate that drug-loaded SCNPs completely eliminate the subcutaneous tumours without recurrence after a single-dose injection combining chemotherapy and photothermal therapy. These supramolecular nanomedicines also exhibit excellent anti-tumour performance against orthotopic breast cancer and prevent lung metastasis with negligible systemic toxicity.Multifunctional nanomedicine platforms are highly promising for anticancer therapy. Here, the authors design polyrotaxane-based theranostic nanoparticles that combine targeted drug delivery with photothermal behaviour to exhibit potent anti-tumour effects in vivo.


Chemical Society Reviews | 2018

Ratiometric optical nanoprobes enable accurate molecular detection and imaging

Xiaolin Huang; Jibin Song; Bryant C. Yung; Xiaohua Huang; Yonghua Xiong; Xiaoyuan Chen

Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.


ACS Nano | 2018

Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Mild Hyperthermia-Induced Bubble-Enhanced Oxygen-Sensitized Radiotherapy

Nan Lu; Wenpei Fan; Xuan Yi; Sheng Wang; Zhantong Wang; Rui Tian; Orit Jacobson; Yijing Liu; Bryant C. Yung; Guofeng Zhang; Zhaogang Teng; Kai Yang; Minming Zhang; Gang Niu; Guangming Lu; Xiaoyuan Chen

Alleviation of tumor hypoxia has been the premise for improving the effectiveness of radiotherapy, which hinges upon the advanced delivery and rapid release of oxygen within the tumor region. Herein, we propose a bubble-enhanced oxygen diffusion strategy to achieve whole tumor oxygenation for significant radiation enhancement based on the bystander effect. Toward this end, sub-50 nm CuS-modified and 64Cu-labeled hollow mesoporous organosilica nanoparticles were constructed for tumor-specific delivery of O2-saturated perfluoropentane (PFP). Through the aid of PFP gasification arising from NIR laser-triggered mild hyperthermia, simultaneous PET/PA/US multimodality imaging and rapid oxygen diffusion across the tumor can be achieved for remarkable hypoxic radiosensitization. Furthermore, the multifunctional oxygen-carrying nanotheranostics also allow for other oxygen-dependent treatments, thus greatly advancing the development of bubble-enhanced synergistic therapy platforms.


Journal of Controlled Release | 2017

Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy

Jihoon Kim; Bryant C. Yung; Won Jong Kim; Xiaoyuan Chen

ABSTRACT Chemotherapeutic drugs have made significant contributions to anticancer therapy, along with other therapeutic methods including surgery and radiotherapy over the past century. However, multidrug resistance (MDR) of cancer cells has remained as a significant obstacle in the achievement of efficient chemotherapy. Recently, there has been increasing evidence for the potential function of nitric oxide (NO) to overcome MDR. NO is an endogenous and biocompatible molecule, contrasting with other potentially toxic chemosensitizing agents that reverse MDR effects, which has raised expectations in the development of efficient therapeutics with low side effects. In particular, nanoparticle‐based drug delivery systems not only facilitate the delivery of multiple therapeutic agents, but also help bypass MDR pathways, which are conducive for the efficient delivery of NO and anticancer drugs, simultaneously. Therefore, this review will discuss the mechanism of NO in overcoming MDR and recent progress of combined NO and drug delivery systems. Graphical abstract Figure. No Caption available.


Nature Communications | 2017

Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy

Guizhi Zhu; Geoffrey M. Lynn; Orit Jacobson; Kai Chen; Yi Liu; Huimin Zhang; Ying Ma; Fuwu Zhang; Rui Tian; Qianqian Ni; Siyuan Cheng; Zhantong Wang; Nan Lu; Bryant C. Yung; Zhe Wang; Lixin Lang; Xiao Fu; Albert J. Jin; Ido D. Weiss; Harshad Vishwasrao; Gang Niu; Hari Shroff; Dennis M. Klinman; Robert A. Seder; Xiaoyuan Chen

Subunit vaccines have been investigated in over 1000 clinical trials of cancer immunotherapy, but have shown limited efficacy. Nanovaccines may improve efficacy but have rarely been clinically translated. By conjugating molecular vaccines with Evans blue (EB) into albumin-binding vaccines (AlbiVax), here we develop clinically promising albumin/AlbiVax nanocomplexes that self-assemble in vivo from AlbiVax and endogenous albumin for efficient vaccine delivery and potent cancer immunotherapy. PET pharmacoimaging, super-resolution microscopies, and flow cytometry reveal almost 100-fold more efficient co-delivery of CpG and antigens (Ags) to lymph nodes (LNs) by albumin/AlbiVax than benchmark incomplete Freund’s adjuvant (IFA). Albumin/AlbiVax elicits ~10 times more frequent peripheral antigen-specific CD8+ cytotoxic T lymphocytes with immune memory than IFA-emulsifying vaccines. Albumin/AlbiVax specifically inhibits progression of established primary or metastatic EG7.OVA, B16F10, and MC38 tumors; combination with anti-PD-1 and/or Abraxane further potentiates immunotherapy and eradicates most MC38 tumors. Albumin/AlbiVax nanocomplexes are thus a robust platform for combination cancer immunotherapy.Albumin conjugates can enhance drug delivery. Here, the authors repurpose albumin-binding Evans blue to develop nanovaccines that co-deliver adjuvants and tumor neoantigens to antigen-presenting cells in lymph nodes, resulting in potent and durable antitumour immunity in combination immunotherapy.


Nature Communications | 2017

Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy.

Wei Chen; Rui Tian; Can Xu; Bryant C. Yung; Guohao Wang; Yijing Liu; Qianqian Ni; Fuwu Zhang; Zijian Zhou; Jingjing Wang; Gang Niu; Ying Ma; Liwu Fu; Xiaoyuan Chen

The delivery of therapeutic peptides for diabetes therapy is compromised by short half-lives of drugs with the consequent need for multiple daily injections that reduce patient compliance and increase treatment cost. In this study, we demonstrate a smart exendin-4 (Ex4) delivery device based on microneedle (MN)-array patches integrated with dual mineralized particles separately containing Ex4 and glucose oxidase (GOx). The dual mineralized particle-based system can specifically release Ex4 while immobilizing GOx as a result of the differential response to the microenvironment induced by biological stimuli. In this manner, the system enables glucose-responsive and closed-loop release to significantly improve Ex4 therapeutic performance. Moreover, integration of mineralized particles can enhance the mechanical strength of alginate-based MN by crosslinking to facilitate skin penetration, thus supporting painless and non-invasive transdermal administration. We believe this smart glucose-responsive Ex4 delivery holds great promise for type 2 diabetes therapy by providing safe, long-term, and on-demand Ex4 therapy.Diabetes treatments often rely on frequent and scheduled drug administration, which reduces patient compliance and increases treatment cost. Here, the authors develop a microneedle-array patch that separately loads drug-releasing module and glucose-sensing element for on-demand, long-term diabetes therapy.

Collaboration


Dive into the Bryant C. Yung's collaboration.

Top Co-Authors

Avatar

Xiaoyuan Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gang Niu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Orit Jacobson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yijing Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhantong Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fuwu Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jibin Song

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guizhi Zhu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Guocan Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zijian Zhou

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge