Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryce Chiang is active.

Publication


Featured researches published by Bryce Chiang.


Journal of Controlled Release | 2014

Ocular delivery of macromolecules.

Yoo Chun Kim; Bryce Chiang; Xianggen Wu; Mark R. Prausnitz

Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non-invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2011

Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in rhesus monkey

Bryce Chiang; Gene Y. Fridman; Chenkai Dai; Mehdi A. Rahman; Charles C. Della Santina

In normal individuals, the vestibular labyrinths sense head movement and mediate reflexes that maintain stable gaze and posture. Bilateral loss of vestibular sensation causes chronic disequilibrium, oscillopsia, and postural instability. We describe a new multichannel vestibular prosthesis (MVP) intended to restore modulation of vestibular nerve activity with head rotation. The device comprises motion sensors to measure rotation and gravitoinertial acceleration, a microcontroller to calculate pulse timing, and stimulator units that deliver constant-current pulses to microelectrodes implanted in the labyrinth. This new MVP incorporates many improvements over previous prototypes, including a 50% decrease in implant size, a 50% decrease in power consumption, a new microelectrode array design meant to simplify implantation and reliably achieve selective nerve-electrode coupling, multiple current sources conferring ability to simultaneously stimulate on multiple electrodes, and circuitry for in vivo measurement of electrode impedances. We demonstrate the performance of this device through in vitro bench-top characterization and in vivo physiological experiments with a rhesus macaque monkey.


Journal of Controlled Release | 2016

Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma.

Bryce Chiang; Yeu-Chun Kim; Amy C. Doty; Hans E. Grossniklaus; Steven P. Schwendeman; Mark R. Prausnitz

Although effective drugs that lower intraocular pressure (IOP) in the management of glaucoma exist, their efficacy is limited by poor patient adherence to the prescribed eye drop regimen. To replace the need for eye drops, in this study we tested the hypothesis that IOP can be reduced for one month after a single targeted injection using a microneedle for administration of a glaucoma medication (i.e., brimonidine) formulated for sustained release in the supraciliary space of the eye adjacent to the drugs site of action at the ciliary body. To test this hypothesis, brimonidine-loaded microspheres were formulated using poly(lactic acid) (PLA) to release brimonidine at a constant rate for 35 days and microneedles were designed to penetrate through the sclera, without penetrating into the choroid/retina, in order to target injection into the supraciliary space. A single administration of these microspheres using a hollow microneedle was performed in the eye of New Zealand White rabbits and was found to reduce IOP initially by 6 mmHg and then by progressively smaller amounts for more than one month. All administrations were well tolerated without significant adverse events, although histological examination showed a foreign-body reaction to the microspheres. This study demonstrates, for the first time, that the highly-targeted delivery of brimonidine-loaded microspheres into the supraciliary space using a microneedle is able to reduce IOP for one month as an alternative to daily eye drops.


Experimental Eye Research | 2016

Circumferential flow of particles in the suprachoroidal space is impeded by the posterior ciliary arteries

Bryce Chiang; Yoo Chun Kim; Henry F. Edelhauser; Mark R. Prausnitz

Microneedle injection into the suprachoroidal space (SCS) enables targeted drug delivery for treatment of posterior segment diseases. This study sought to identify and characterize anatomical barriers to circumferential spread of particles in the SCS of rabbit and human cadaver eyes. These barriers could make targeting specific regions within the SCS challenging. A hollow microneedle (33-gauge, 750xa0μm long) was used to inject fluorescent particles into albino New Zealand White rabbit eyes exxa0vivo at six different positions around the limbus and a limited number of conditions inxa0vivo. SCS injections were also performed in human cadaver eyes 8xa0mm and 2xa0mm from the optic nerve (ON). Eyes were dissected and particle distribution was quantified. In rabbit eyes, injections made in the superior or inferior hemispheres (even when injected temporally immediately adjacent to the long posterior ciliary artery (LPCA)) did not significantly cross into the other hemisphere, apparently due to a barrier formed by the LPCA. The vortex veins had a minor effect on particle deposition, limited to only around the vortex vein root. In human eyes, the short posterior ciliary arteries (SPCAs) prevented circumferential spread towards the macula and ON. In conclusion, the rabbit LPCA and the human SPCA were anatomical barriers to particle spread within the SCS. Therefore, design of drug delivery protocols targeting the SCS need to account for barriers formed by anatomical structures in order for injected drug to reach target tissues.


Experimental Eye Research | 2016

Distribution of particles, small molecules and polymeric formulation excipients in the suprachoroidal space after microneedle injection

Bryce Chiang; Nitin Venugopal; Henry F. Edelhauser; Mark R. Prausnitz

The purpose of this work was to determine the effect of injection volume, formulation composition, and time on circumferential spread of particles, small molecules, and polymeric formulation excipients in the suprachoroidal space (SCS) after microneedle injection into New Zealand White rabbit eyes exxa0vivo and inxa0vivo. Microneedle injections of 25-150xa0μL Hanks Balanced Salt Solution (HBSS) containing 0.2xa0μm red-fluorescent particles and a model small molecule (fluorescein) were performed in rabbit eyes exxa0vivo, and visualized via flat mount. Particles with diameters of 0.02-2xa0μm were co-injected into SCS inxa0vivo with fluorescein or a polymeric formulation excipient: fluorescein isothiocyanate (FITC)-labeled Discovisc or FITC-labeled carboxymethyl cellulose (CMC). Fluorescent fundus images were acquired over time to determine area of particle, fluorescein, and polymeric formulation excipient spread, as well as their co-localization. We found that fluorescein covered a significantly larger area than co-injected particles when suspended in HBSS, and that this difference was present from 3xa0min post-injection onwards. We further showed that there was no difference in initial area covered by FITC-Discovisc and particles; the transport time (i.e., the time until the FITC-Discovisc and particle area began dissociating) was 2xa0d. There was also no difference in initial area covered by FITC-CMC and particles; the transport time in FITC-CMC was 4xa0d. We also found that particle size (20xa0nm-2xa0μm) had no effect on spreading area when delivered in HBSS or Discovisc. We conclude that (i) the area of particle spread in SCS during injection generally increased with increasing injection volume, was unaffected by particle size, and was significantly less than the area of fluorescein spread, (ii) particles suspended in low-viscosity HBSS formulation were entrapped in the SCS after injection, whereas fluorescein was not and (iii) particles co-injected with viscous polymeric formulation excipients co-localized near the site of injection in the SCS, continued to co-localize while spreading over larger areas for 2-4 days, and then no longer co-localized as the polymeric formulation excipients were cleared within 1-3 weeks and the particles remained largely in place. These data suggest that particles encounter greater barriers to flow in SCS compared to molecules and that co-localization of particles and polymeric formulation excipients allows spreading over larger areas of the SCS until the particles and excipients dissociate.


Investigative Ophthalmology & Visual Science | 2017

Clearance Kinetics and Clearance Routes of Molecules From the Suprachoroidal Space After Microneedle Injection

Bryce Chiang; Ke Wang; Christopher Ethier; Mark R. Prausnitz

Purpose To determine clearance kinetics and routes of clearance of molecules from the suprachoroidal space (SCS) of live New Zealand White rabbits. Methods Suprachoroidal space collapse rate and pressure changes after microneedle injection into SCS were determined. Fluorescent fundus images were acquired to determine clearance rates of molecules ranging in size from 332 Da to 2 MDa. Microneedle injections of fluorescein were performed, and samples were taken from various sites over time to determine amount of fluorescein exiting the eye. Clearance transport was modeled theoretically and compared with experimental data. Results After injection, pressures in SCS and vitreous humor spiked and returned to baseline within 20 minutes; there was no difference between these two pressures. Suprachoroidal space collapse occurred within 40 minutes. One hour after fluorescein injection, 46% of fluorescein was still present in the eye, 15% had transported across sclera, 6% had been cleared by choroidal vasculature, and 4% had exited via leakage pathways. Characteristic clearance time increased in proportion with molecular radius, but total clearance of 2 MDa FITC-dextran was significantly slower (21 days) than smaller molecules. These data generally agreed with predictions from a theoretical model of molecular transport. Conclusions Guided by experimental data in the context of model predictions, molecular clearance from SCS occurred in three regimes: (1) on a time scale of approximately 10 minutes, fluid and molecules exited SCS by diffusion into sclera and choroid, and by pressure-driven reflux via transscleral leakage sites; (2) in approximately 1 hour, molecules cleared from choroid by blood flow; and (3) in 1 to 10 hours, molecules cleared from sclera by diffusion and convection.


Investigative Ophthalmology & Visual Science | 2017

Thickness and Closure Kinetics of the Suprachoroidal Space Following Microneedle Injection of Liquid Formulations.

Bryce Chiang; Nitin Venugopal; Hans E. Grossniklaus; Jae Hwan Jung; Henry F. Edelhauser; Mark R. Prausnitz

Purpose To determine the effect of injection volume and formulation of a microneedle injection into the suprachoroidal space (SCS) on SCS thickness and closure kinetics. Methods Microneedle injections containing 25 to 150 μL Hanks balanced salt solution (HBSS) were performed in the rabbit SCS ex vivo. Distribution of SCS thickness was measured by ultrasonography and three-dimensional (3D) cryo-reconstruction. Microneedle injections were performed in the rabbit SCS in vivo using HBSS, Discovisc, and 1% to 5% carboxymethyl cellulose (CMC) in HBSS. Ultrasonography was used to track SCS thickness over time. Results Increasing HBSS injection volume increased the area of expanded SCS, but did not increase SCS thickness ex vivo. With SCS injections in vivo, the SCS initially expanded to thicknesses of 0.43 ± 0.06 mm with HBSS, 1.5 ± 0.4 mm with Discovisc, and 0.69 to 2.1 mm with 1% to 5% CMC. After injection with HBSS, Discovisc, and 1% CMC solution, the SCS collapsed to baseline with time constants of 19 minutes, 6 hours, and 2.4 days, respectively. In contrast, injections with 3% to 5% CMC solution resulted in SCS expansion to 2.3 to 2.8 mm over the course of 2.8 to 9.1 hours, after which the SCS collapsed to baseline with time constants of 4.5 to 9.2 days. Conclusions With low-viscosity formulations, SCS expands to a thickness that remains roughly constant, independent of the volume of fluid injected. Increasing injection fluid viscosity significantly increased SCS thickness. Expansion of the SCS is hypothesized to be controlled by a balance between the viscous forces of the liquid formulation and the resistive biomechanical forces of the tissue.


International Journal of Molecular Sciences | 2014

Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

E. Cabigas; Inthirai Somasuntharam; Milton R. Brown; Pao Che; Karl D. Pendergrass; Bryce Chiang; W. Taylor; Michael E. Davis

Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2), has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.


Journal of Controlled Release | 2018

Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle

Jae Hwan Jung; Bryce Chiang; Hans E. Grossniklaus; Mark R. Prausnitz

&NA; Treatment of many posterior‐segment ocular indications would benefit from improved targeting of drug delivery to the back of the eye. Here, we propose the use of iontophoresis to direct delivery of negatively charged nanoparticles through the suprachoroidal space (SCS) toward the posterior pole of the eye. Injection of nanoparticles into the SCS of the rabbit eye ex vivo without iontophoresis led to a nanoparticle distribution mostly localized at the site of injection near the limbus and <15% of nanoparticles delivered to the most posterior region of SCS (>9 mm from the limbus). Iontophoresis using a novel microneedle‐based device increased posterior targeting with >30% of nanoparticles in the most posterior region of SCS. Posterior targeting increased with increasing iontophoresis current and increasing application time up to 3 min, but further increasing to 5 min was not better, probably due to the observed collapse of the SCS within 5 min after injection ex vivo. Reversing the direction of iontophoretic flow inhibited posterior targeting, with just ˜5% of nanoparticles reaching the most posterior region of SCS. In the rabbit eye in vivo, iontophoresis at 0.14 mA for 3 min after injection of a 100 &mgr;L suspension of nanoparticles resulted in ˜30% of nanoparticles delivered to the most posterior region of the SCS, which was consistent with ex vivo findings. The procedure was well tolerated, with only mild, transient tissue effects at the site of injection. We conclude that iontophoresis in the SCS using a microneedle has promise as a method to target ocular drug delivery within the eye, especially toward the posterior pole.


Advanced Drug Delivery Reviews | 2018

The suprachoroidal space as a route of administration to the posterior segment of the eye

Bryce Chiang; Jae Hwan Jung; Mark R. Prausnitz

Abstract The suprachoroidal space (SCS) is a potential space between the sclera and choroid that traverses the circumference of the posterior segment of the eye. The SCS is an attractive site for drug delivery because it targets the choroid, retinal pigment epithelium, and retina with high bioavailability, while maintaining low levels elsewhere in the eye. Indeed, phase III clinical trials are investigating the safety and efficacy of SCS drug delivery. Here, we review the anatomy and physiology of the SCS; methods to access the SCS; kinetics of SCS drug delivery; strategies to target within the SCS; current and potential clinical indications; and the safety and efficacy of this approach in preclinical animal studies and clinical trials. Graphical abstract Figure. No Caption available.

Collaboration


Dive into the Bryce Chiang's collaboration.

Top Co-Authors

Avatar

Mark R. Prausnitz

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Hwan Jung

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoo Chun Kim

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amy C. Doty

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Charles C. Della Santina

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nitin Venugopal

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge