Brygida Maria Dzidek
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brygida Maria Dzidek.
world haptics conference | 2015
Thomas Sednaoui; Eric Vezzoli; Brygida Maria Dzidek; Betty Lemaire-Semail; C. Chappaz; Michael J. Adams
Previously proposed models of the ultrasonic lubrication of a finger mediated by flat surfaces are not consistent with the experimental results for vibrational amplitudes greater than a few microns. This paper presents experimental data acquired through a dedicated tribometer and proposes an experimental model of ultrasonic lubrication at high vibrational amplitudes.
international conference on human haptic sensing and touch enabled computer applications | 2014
Brygida Maria Dzidek; Michael J. Adams; Zhibing Zhang; Simon A. Johnson; Séréna Bochereau; Vincent Hayward
Understanding how fingers slip on surfaces is essential for elucidating the mechanisms of haptic perception. This paper describes an investigation of the relationship between occlusion and the non-Coulombic slip of the finger pad, which results in the frictional force being a power law function of the normal load, with an index \( n \); Coulombic slip corresponds to \( n = 1 \). For smooth impermeable surfaces, occlusion of moisture excreted by the sweat glands may cause up to an order of magnitude increase in the coefficient of friction with a characteristic time of ~20 s. This arises because the moisture plasticises the asperities on the finger print ridges resulting in an increase in their compliance and hence an increase in the contact area. Under such steady state sliding conditions a finger pad behaves like a Hertzian contact decorated with the valleys between the finger print ridges, which only act to reduce the true but not the nominal contact area. In the limit, at long occlusion times (~50 s), it can be shown that the power law index tends to a value in the range \( {2 \mathord{\left/ {\vphantom {2 {3 \le n \le 1}}} \right. \kern-0pt} {3 \le n \le 1}} \). In contrast, measurements against a rough surface demonstrate that the friction is not affected by occlusion and that a finger pad exhibits Coulombic slip.
Journal of the Royal Society Interface | 2017
Brygida Maria Dzidek; Michael J. Adams; James W. Andrews; Zhibing Zhang; Simon A. Johnson
The coefficient of friction of most solid objects is independent of the applied normal force because of surface roughness. This behaviour is observed for a finger pad except at long contact times (greater than 10 s) against smooth impermeable surfaces such as glass when the coefficient increases with decreasing normal force by about a factor of five for the load range investigated here. This is clearly an advantage for some precision manipulation and grip tasks. Such normal force dependence is characteristic of smooth curved elastic bodies. It has been argued that the occlusion of moisture in the form of sweat plasticises the surface topographical features and their increased compliance allows flattening under an applied normal force, so that the surfaces of the fingerprint ridges are effectively smooth. While the normal force dependence of the friction is consistent with the theory of elastic frictional contacts, the gross deformation behaviour is not and, for commonly reported values of the Youngs modulus of stratum corneum, the deformation of the ridges should be negligible compared with the gross deformation of the finger pad even when fully occluded. This paper describes the development of a contact mechanics model that resolves these inconsistencies and is validated against experimental data.
world haptics conference | 2015
Eric Vezzoli; Brygida Maria Dzidek; Thomas Sednaoui; Frédéric Giraud; Michael J. Adams; Betty Lemaire-Semail
Ultrasonic vibration of a plate can be used to modulate the friction of a finger pad sliding on a surface. This modulation can modify the user perception of the touched object and induce the perception of textured materials. In the current paper, an elastic model of finger print ridges is developed. A friction reduction phenomenon based on non-Coulombic friction is evaluated based on this model. Then, a comparison with experimental data is carried out to assess the validity of the proposed model and analysis.
IEEE Transactions on Haptics | 2017
Thomas Sednaoui; Eric Vezzoli; Brygida Maria Dzidek; Betty Lemaire-Semail; C. Chappaz; Michael J. Adams
In part 1 of the current study of haptic displays, a finite element (FE) model of a finger exploring a plate vibrating out-of-plane at ultrasonic frequencies was developed as well as a spring-frictional slider model. It was concluded that the reduction in friction induced by the vibrations could be ascribed to ratchet mechanism as a result of intermittent contact. The relative reduction in friction calculated using the FE model could be superimposed onto an exponential function of a dimensionless group defined from relevant parameters. The current paper presents measurements of the reduction in friction, involving real and artificial fingertips, as a function of the vibrational amplitude and frequency, the applied normal force and the exploration velocity. The results are reasonably similar to the calculated FE values and also could be superimposed using the exponential function provided that the intermittent contact was sufficiently well developed, which for the frequencies examined correspond to a minimum vibrational amplitude of
IEEE Transactions on Haptics | 2017
Séréna Bochereau; Brygida Maria Dzidek; Michael J. Adams; Vincent Hayward
\sim 1
ieee haptics symposium | 2016
Brygida Maria Dzidek; Séréna Bochereau; Simon A. Johnson; Vincent Hayward; Michael J. Adams
µm P-P. It was observed that the reduction in friction depends on the exploration velocity and is independent of the applied normal force and ambient air pressure, which is not consistent with the squeeze film mechanism. However, the modelling did not incorporate the influence of air and the effect of ambient pressure was measured under a limited range of conditions, Thus squeeze film levitation may be synergistic with the mechanical interaction.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Brygida Maria Dzidek; Séréna Bochereau; Simon A. Johnson; Vincent Hayward; Michael J. Adams
We describe an instrument intended to study finger contacts under tangential dynamic loading. This type of loading is relevant to the natural conditions when touch is used to discriminate and identify the properties of the surfaces of objects—it is also crucial during object manipulation. The system comprises a high performance tribometer able to accurately record in vivo the components of the interfacial forces when a finger interacts with arbitrary surfaces which is combined with a high-speed, high-definition imaging apparatus. Broadband skin excitation reproducing the dynamic contact loads previously identified can be effected while imaging the contact through a transparent window, thus closely approximating the condition when the skin interacts with a non-transparent surface during sliding. As a preliminary example of the type of phenomenon that can be identified with this apparatus, we show that traction in the range from 10 to 1000 Hz tends to decrease faster with excitation frequency for dry fingers than for moist fingers.
international conference on human haptic sensing and touch enabled computer applications | 2018
Brygida Maria Dzidek; William Thierry Alain Frier; Adam Harwood; Richard Hayden
The evolution of the contact area of a finger pad against a surface is critical during tactile interaction, whether for gripping or discriminating surfaces. The contact area made by a finger pad is commonly considered at two distinct length scales corresponding to the gross area, Agross, and to the smaller ridge area, Aridge, that excludes the interstitial spaces between the ridges. Here, these quantities were obtained from high-resolution imaging of contacts during loading and stress relaxation. While AgroSS rapidly reaches an ultimate value, the contact made by the ridges is initially formed from unconnected junctions with a total contact area, Ajunct, which continues to increase for several seconds during the holding period. Thus, the contact area grows in a two-step process where the number of junctions made by the ridges first increases, followed by a growth of their size and connectivity. Immediately after contact the stratum corneum is in a glassy state and the individual junctions form a multiple asperity contact. At longer contact times, the asperities soften owing to the occlusion of moisture excreted from the sweat pores in the ridges. Thus, the real area of contact, Areal, which drives the creation of friction, grows with time at a relatively slow rate. It is concluded that multi-asperity dynamic contact models should be preferred compared with static models in order to describe the physics of finger pad contact mechanics and friction.
Archive | 2017
Brygida Maria Dzidek; Michael J. Adams; James W. Andrews; Zhibing Zhang; Simon A. Johnson
Significance Why does gripping a pen, tool, or handle feel more secure when it is coated with a rubbery material? The keratin of the skin outer layer is stiff and rough at a small scale. When encountering a smooth, stiff, and impermeable surface, such as polished metal or glass, the actual contact area is initially small as is the friction. Because the keratin softens when it is hydrated by the moisture secreted from the sweat pores, it requires many seconds for the contact area to increase to the value reached almost instantaneously with a soft material, such as a rubber. This mechanism might be used by our tactile sense to identify materials and has implications for the design of tactile displays. The process by which human fingers gives rise to stable contacts with smooth, hard objects is surprisingly slow. Using high-resolution imaging, we found that, when pressed against glass, the actual contact made by finger pad ridges evolved over time following a first-order kinetics relationship. This evolution was the result of a two-stage coalescence process of microscopic junctions made between the keratin of the stratum corneum of the skin and the glass surface. This process was driven by the secretion of moisture from the sweat glands, since increased hydration in stratum corneum causes it to become softer. Saturation was typically reached within 20 s of loading the contact, regardless of the initial moisture state of the finger and of the normal force applied. Hence, the gross contact area, frequently used as a benchmark quantity in grip and perceptual studies, is a poor reflection of the actual contact mechanics that take place between human fingers and smooth, impermeable surfaces. In contrast, the formation of a steady-state contact area is almost instantaneous if the counter surface is soft relative to keratin in a dry state. It is for this reason that elastomers are commonly used to coat grip surfaces.