Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryn A. Martin is active.

Publication


Featured researches published by Bryn A. Martin.


Journal of Biomechanical Engineering-transactions of The Asme | 2010

Spinal Subarachnoid Space Pressure Measurements in an In Vitro Spinal Stenosis Model: Implications on Syringomyelia Theories

Bryn A. Martin; Richard Labuda; Thomas J. Royston; John N. Oshinski; Bermans J. Iskandar; Francis Loth

Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.


Journal of Biomechanical Engineering-transactions of The Asme | 2005

Syringomyelia Hydrodynamics: An in Vitro Study Based on in Vivo Measurements

Bryn A. Martin; Wojciech Kalata; Francis Loth; Thomas J. Royston; John N. Oshinski

A simplified in vitro model of the spinal canal, based on in vivo magnetic resonance imaging, was used to examine the hydrodynamics of the human spinal cord and subarachnoid space with syringomyelia. In vivo magnetic resonance imaging (MRI) measurements of subarachnoid (SAS) geometry and cerebrospinal fluid velocity were acquired in a patient with syringomyelia and used to aid in the in vitro model design and experiment. The in vitro model contained a fluid-filled coaxial elastic tube to represent a syrinx. A computer controlled pulsatile pump was used to subject the in vitro model to a CSF flow waveform representative of that measured in vivo. Fluid velocity was measured at three axial locations within the in vitro model using the same MRI scanner as the patient study. Pressure and syrinx wall motion measurements were conducted external to the MR scanner using the same model and flow input. Transducers measured unsteady pressure both in the SAS and intra-syrinx at four axial locations in the model A laser Doppler vibrometer recorded the syrinx wall motion at 18 axial locations and three polar positions. Results indicated that the peak-to-peak amplitude of the SAS flow waveform in vivo was approximately tenfold that of the syrinx and in phase (SAS approximately 5.2 +/- 0.6 ml/s, syrinx approximately 0.5 +/- 0.3 ml/s). The in vitro flow waveform approximated the in vivo peak-to-peak magnitude (SAS approximately 4.6 +/- 0.2 ml/s, syrinx approximately 0.4 +/- 0.3 ml/s). Peak-to-peak in vitro pressure variation in both the SAS and syrinx was approximately 6 mm Hg. Syrinx pressure waveform lead the SAS pressure waveform by approximately 40 ms. Syrinx pressure was found to be less than the SAS for approximately 200 ms during the 860-ms flow cycle. Unsteady pulse wave velocity in the syrinx was computed to be a maximum of approximately 25 m/s. LDV measurements indicated that spinal cord wall motion was nonaxisymmetric with a maximum displacement of approximately 140 microm, which is below the resolution limit of MRI. Agreement between in vivo and in vitro MR measurements demonstrates that the hydrodynamics in the fluid filled coaxial elastic tube system are similar to those present in a single patient with syringomyelia. The presented in vitro study of spinal cord wall motion, and complex unsteady pressure and flow environment within the syrinx and SAS, provides insight into the complex biomechanical forces present in syringomyelia.


PLOS ONE | 2012

Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine.

Theresia I. Yiallourou; Jan Robert Kröger; Nikolaos Stergiopulos; David Maintz; Bryn A. Martin; Alexander C. Bunck

Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques.


Neurological Research | 2011

Cerebrospinal fluid hydrodynamics in type I Chiari malformation

Nicholas Shaffer; Bryn A. Martin; Francis Loth

Abstract Purpose: The objective of this study was to review past studies that have used engineering analysis to examine cerebrospinal fluid hydrodynamics in cranial and spinal subarachnoid spaces in both healthy humans and those affected by type I Chiari malformation. Methods: A PubMed search of literature pertaining to cerebrospinal fluid hydrodynamics was performed with a particular focus on those that utilized methods such as computational fluid dynamics or experimental flow modeling. Discussion: From the engineer’s perspective, type I Chiari malformation is an abnormal geometry of the cerebellum that causes increased resistance to cerebrospinal fluid flow between the intracranial and spinal subarachnoid space. As such, understanding the hydrodynamics of cerebrospinal fluid in the craniospinal subarachnoid space has long been thought to be important in the diagnosis and management of type I Chiari malformation. Hydrodynamic quantification of cerebrospinal fluid motion in the subarachnoid space may better reflect the pathophysiology of the disorder and serve as a prognostic indicator in conjunction with geometric magnetic resonance measurements that are currently used clinically. This review discusses the results of studies that have sought to quantify the hydrodynamics of cerebrospinal fluid motion using computational and experimental modeling and critiques the methods by which the results were obtained. Conclusion: Researchers have found differences in cerebrospinal fluid velocities and pressures in type I Chiari malformation patients compared to healthy subjects. However, further research is necessary to determine the causal relationship between changes to hydrodynamic parameters such as cerebrospinal fluid velocity, pressure, resistance to flow, and craniospinal compliance and clinical aspects such as neurological symptoms, radiological evidence of severity, and surgical success.


PLOS ONE | 2013

Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation

Bryn A. Martin; Wojciech Kalata; Nicholas Shaffer; Paul Fischer; Mark G. Luciano; Francis Loth

Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning.


Cerebrospinal Fluid Research | 2009

The influence of coughing on cerebrospinal fluid pressure in an in vitro syringomyelia model with spinal subarachnoid space stenosis

Bryn A. Martin; Francis Loth

BackgroundThe influence of coughing, on the biomechanical environment in the spinal subarachnoid space (SAS) in the presence of a cerebrospinal fluid flow stenosis, is thought to be an important etiological factor in craniospinal disorders, including syringomyelia (SM), Chiari I malformation, and hydrocephalus. The aim of this study was to investigate SAS and syrinx pressures during simulated coughing using in vitro models and to provide information for the understanding of the craniospinal fluid system dynamics to help develop better computational models.MethodsFour in vitro models were constructed to be simplified representations of: 1) non-communicating SM with spinal SAS stenosis; 2) non-communicating SM due to spinal SAS stenosis with a distensible spinal column; 3) non-communicating SM post surgical removal of a spinal SAS stenosis; and 4) a spinal SAS stenosis due to spinal trauma. All of the models had a flexible spinal cord. To simulate coughing conditions, an abrupt CSF pressure pulse (~ 5 ms) was imposed at the caudal end of the spinal SAS by a computer-controlled pump. Pressure measurements were obtained at 4 cm intervals along the spinal SAS and syrinx using catheter tip transducers.ResultsPressure measurements during a simulated cough, showed that removal of the stenosis was a key factor in reducing pressure gradients in the spinal SAS. The presence of a stenosis resulted in a caudocranial pressure drop in the SAS, whereas pressure within the syrinx cavity varied little caudocranially. A stenosis in the SAS caused the syrinx to balloon outward at the rostral end and be compressed at the caudal end. A >90% SAS stenosis did not result in a significant Venturi effect. Increasing compliance of the spinal column reduced forces acting on the spinal cord. The presence of a syrinx in the cord when there was a stenosis in the SAS, reduced pressure forces in the SAS. Longitudinal pressure dissociation acted to suck fluid and tissue caudocranially in the SAS with a stenosis.ConclusionsPressures in the spinal SAS during a simulated cough in vitro had similar peak, transmural, and longitudinal pressures to in vivo measurements reported in the literature. The pressure wave velocities and pressure gradients during coughing (longitudinal pressure dissociation and transmural pressure) were impacted by alterations in geometry, compliance, and the presence of a syrinx and/or stenosis.


PLOS ONE | 2014

The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine

Soroush Heidari Pahlavian; Theresia I. Yiallourou; R. Shane Tubbs; Alexander C. Bunck; Francis Loth; Mark Goodin; Mehrdad Raisee; Bryn A. Martin

Cerebrospinal fluid (CSF) dynamics in the spinal subarachnoid space (SSS) have been thought to play an important pathophysiological role in syringomyelia, Chiari I malformation (CM), and a role in intrathecal drug delivery. Yet, the impact that fine anatomical structures, including nerve roots and denticulate ligaments (NRDL), have on SSS CSF dynamics is not clear. In the present study we assessed the impact of NRDL on CSF dynamics in the cervical SSS. The 3D geometry of the cervical SSS was reconstructed based on manual segmentation of MRI images of a healthy volunteer and a patient with CM. Idealized NRDL were designed and added to each of the geometries based on in vivo measurments in the literature and confirmation by a neuroanatomist. CFD simulations were performed for the healthy and patient case with and without NRDL included. Our results showed that the NRDL had an important impact on CSF dynamics in terms of velocity field and flow patterns. However, pressure distribution was not altered greatly although the NRDL cases required a larger pressure gradient to maintain the same flow. Also, the NRDL did not alter CSF dynamics to a great degree in the SSS from the foramen magnum to the C1 level for the healthy subject and CM patient with mild tonsillar herniation (∼6 mm). Overall, the NRDL increased fluid mixing phenomena and resulted in a more complex flow field. Comparison of the streamlines of CSF flow revealed that the presence of NRDL lead to the formation of vortical structures and remarkably increased the local mixing of the CSF throughout the SSS.


American Journal of Physiology-heart and Circulatory Physiology | 2012

A Coupled Hydrodynamic Model of the Cardiovascular and Cerebrospinal Fluid System

Bryn A. Martin; Philippe Reymond; Jan Novy; Olivier Balédent; Nikos Stergiopulos

Coupling of the cardiovascular and cerebrospinal fluid (CSF) system is considered to be important to understand the pathophysiology of cerebrovascular and craniospinal disease and intrathecal drug delivery. A coupled cardiovascular and CSF system model was designed to examine the relation of spinal cord (SC) blood flow (SCBF) and CSF pulsations along the spinal subarachnoid space (SSS). A one-dimensional (1-D) cardiovascular tree model was constructed including a simplified SC arterial network. Connection between the cardiovascular and CSF system was accomplished by a transfer function based on in vivo measurements of CSF and cerebral blood flow. A 1-D tube model of the SSS was constructed based on in vivo measurements in the literature. Pressure and flow throughout the cardiovascular and CSF system were determined for different values of craniospinal compliance. SCBF results indicated that the cervical, thoracic, and lumbar SC each had a signature waveform shape. The cerebral blood flow to CSF transfer function reproduced an in vivo-like CSF flow waveform. The 1-D tube model of the SSS resulted in a distribution of CSF pressure and flow and a wave speed that were similar to those in vivo. The SCBF to CSF pulse delay was found to vary a great degree along the spine depending on craniospinal compliance and vascular anatomy. The properties and anatomy of the SC arterial network and SSS were found to have an important impact on pressure and flow and perivascular fluid movement to the SC. Overall, the coupled model provides predictions about the flow and pressure environment in the SC and SSS. More detailed measurements are needed to fully validate the model.


IEEE Transactions on Biomedical Engineering | 2009

MR Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal

Wojciech Kalata; Bryn A. Martin; John N. Oshinski; Michael Jerosch-Herold; Thomas J. Royston; Francis Loth

Noninvasive measurement of the speed with which the cerebrospinal fluid (CSF) velocity wave travels through the spinal canal is of interest as a potential indicator of CSF system pressure and compliance, both of which may play a role in the development of craniospinal diseases. However, measurement of CSF velocity wave speed (VWS) has eluded researchers primarily due to either a lack of access to CSF velocity measurements or poor temporal resolution. Here, we present a CSF VWS measurement methodology using a novel MR sequence that acquires unsteady velocity measurements during the cardiac cycle with a time interval <10 ms. Axial CSF velocity measurements were obtained in the sagittal plane of the cervical spinal region on three subjects referred for an MRI scan without craniospinal disorders. CSF VWS was estimated by using the time shift identified by the maximum velocity and maximum temporal velocity gradient during the cardiac cycle. Based on the maximum velocity gradient, the mean VWS in the three cases was calculated to be 4.6 m/s (standard deviation 1.7 m/s, p < 0.005 ) during systolic acceleration. VWS computed using maximum velocity alone was not statistically significant for any of the three cases. The measurements of VWS are close in magnitude to previously published values. The methodology represents a new technique that can be used to measure VWS in the spinal canal noninvasively. Further research is required to both validate the measurements and determine clinical significance.


Journal of Magnetic Resonance Imaging | 2017

Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI

Selda Yildiz; Suraj Thyagaraj; Ning Jin; Xiaodong Zhong; Soroush Heidari Pahlavian; Bryn A. Martin; Francis Loth; John N. Oshinski; Karim G. Sabra

To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).

Collaboration


Dive into the Bryn A. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Royston

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Theresia I. Yiallourou

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos Stergiopulos

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Nikolaos Stergiopulos

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bermans J. Iskandar

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge