Bryndis Birnir
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bryndis Birnir.
Nature Medicine | 2006
Yawei Liu; Ingrid Teige; Bryndis Birnir; Shohreh Issazadeh-Navikas
Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-β1–TGF-β receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between neurons and T cells results in the conversion of encephalitogenic T cells to CD25+TGF-β1+CTLA-4+FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4 but not TGF-β1. Autocrine action of TGF-β1, however, is important for the proliferative arrest of Treg cells. Blocking the B7 and TGF-β pathways prevents the CNS-specific generation of Treg cells. These findings show that generation of neuron-dependent Treg cells in the CNS is instrumental in regulating CNS inflammation.
Nature | 1997
M Eghbali; J P Curmi; Bryndis Birnir; Peter W. Gage
Benzodiazepines, which are widely used clinically for relief of anxiety and for sedation, are thought to enhance synaptic inhibition in the central nervous system by increasing the open probability of chloride channels activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Here we show that the benzodiazepine diazepam can also increase the conductance of GABAAchannels activated by low concentrations of GABA (0.5 or 5 μM) in rat cultured hippocampal neurons. Before exposure to diazepam, chloride channels activated by GABA had conductances of 8 to 53 pS. Diazepam caused a concentration-dependent and reversible increase in the conductance of these channels towards a maximum conductance of 70–80 pS and the effect was as great as 7-fold in channels of lowest initial conductance. Increasing the conductance of GABAAchannels tonically activated by low ambient concentrations of GABA in the extracellular environment may be an important way in which these drugs depress excitation in the central nervous system. That any drug has such a large effect on single channel conductance has not been reported previously and has implications for models of channel structure and conductance.
Journal of Biological Chemistry | 2005
Pouya Movahed; Bo Jönsson; Bryndis Birnir; Johan Wingstrand; Tino Dyhring Jørgensen; Anna Ermund; Olov Sterner; Peter M. Zygmunt; Edward D. Högestätt
The endogenous C18 N-acylethanolamines (NAEs) N-linolenoylethanolamine (18:3 NAE), N-linoleoylethanolamine (18:2 NAE), N-oleoylethanolamine (18:1 NAE), and N-stearoylethanolamine (18:0 NAE) are structurally related to the endocannabinoid anandamide (20:4 NAE), but these lipids are poor ligands at cannabinoid CB1 receptors. Anandamide is also an activator of the transient receptor potential (TRP) vanilloid 1 (TRPV1) on primary sensory neurons. Here we show that C18 NAEs are present in rat sensory ganglia and vascular tissue. With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide. At submicromolar concentrations, 18:3 NAE, 18:2 NAE, and 18:1 NAE, but not 18:0 NAE and oleic acid, activate native rTRPV1 on perivascular sensory nerves. 18:1 NAE does not activate these nerves in TRPV1 gene knock-out mice. Only the unsaturated C18 NAEs elicit whole cell currents and fluorometric calcium responses in HEK293 cells expressing hTRPV1. Molecular modeling revealed a low energy cluster of U-shaped unsaturated NAE conformers, sharing several pharmacophoric elements with capsaicin. Furthermore, one of the two major low energy conformational families of anandamide also overlaps with the cannabinoid CB1 receptor ligand HU210, which is in line with anandamide being a dual activator of TRPV1 and the cannabinoid CB1 receptor. This study shows that several endogenous non-cannabinoid NAEs, many of which are more abundant than anandamide in rat tissues, activate TRPV1 and thus may play a role as endogenous TRPV1 modulators.
The Journal of General Physiology | 2004
Matthias Braun; A. Wendt; Bryndis Birnir; Jonas Broman; Lena Eliasson; Juris Galvanovskis; Jesper Gromada; Hindrik Mulder; Patrik Rorsman
We have explored whether γ-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic β-cells. To this end, β-cells were engineered to express GABAA-receptor Cl−-channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every β-cell contains ∼3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl−-currents, was observed during membrane depolarizations from −70 mV to voltages beyond −40 mV or when Ca2+ was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca2+ entry was inhibited using Cd2+. Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes ∼1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic β-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.
Journal of Neuroimmunology | 2008
Helen Bjurstöm; Jun-Yang Wang; Ida Ericsson; Martin Bengtsson; Yawei Liu; Suresh Kumar-Mendu; Shohreh Issazadeh-Navikas; Bryndis Birnir
gamma-aminobutyric acid (GABA) is the main neuroinhibitory transmitter in the brain. Here we show that GABA in the extracellular space may affect the fate of pathogenic T lymphocytes entering the brain. We examined in encephalitogenic T cells if they expressed functional GABA channels that could be activated by the low (nM-1 microM), physiological concentrations of GABA present around neurons in the brain. The cells expressed the alpha1, alpha4, beta2, beta3, gamma1 and delta GABAA channel subunits and formed functional, extrasynaptic-like GABA channels that were activated by 1 microM GABA. 100 nM and higher GABA concentrations decreased T cell proliferation. The results are consistent with GABA being immunomodulatory.
Amino Acids | 2013
Zhe Jin; Suresh Kumar Mendu; Bryndis Birnir
In recent years, it has become clear that there is an extensive cross-talk between the nervous and the immune system. Somewhat surprisingly, the immune cells themselves do express components of the neuronal neurotransmitters systems. What role the neurotransmitters, their ion channels, receptors and transporters have in immune function and regulation is an emerging field of study. Several recent studies have shown that the immune system is capable of synthesizing and releasing the classical neurotransmitter GABA (γ-aminobutyric acid). GABA has a number of effects on the immune cells such as activation or suppression of cytokine secretion, modification of cell proliferation and GABA can even affect migration of the cells. The immune cells encounter GABA when released by the immune cells themselves or when the immune cells enter the brain. In addition, GABA can also be found in tissues like the lymph nodes, the islets of Langerhans and GABA is in high enough concentration in blood to activate, e.g., GABA-A channels. GABA appears to have a role in autoimmune diseases like multiple sclerosis, type 1 diabetes, and rheumatoid arthritis and may modulate the immune response to infections. In the near future, it will be important to work out what specific effects GABA has on the function of the different types of immune cells and determine the underlying mechanisms. In this review, we discuss some of the recent findings revealing the role of GABA as an immunomodulator.
PLOS Pathogens | 2012
Jonas M. Fuks; Romanico B. G. Arrighi; Jessica M. Weidner; Suresh Kumar Mendu; Zhe Jin; Robert P. A. Wallin; Bence Rethi; Bryndis Birnir; Antonio Barragan
During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABAA receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABAA receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.
Journal of Biological Chemistry | 2004
Andrea B. Everitt; Tien Luu; Brett A. Cromer; Mary Tierney; Bryndis Birnir; Richard W Olsen; Peter W. Gage
High conductance γ-aminobutyric acid type A (GABAA) channels (>40 picosiemens (pS)) have been reported in some studies on GABAA channels in situ but not in others, whereas recombinant GABAA channels do not appear to display conductances above 40 pS. Furthermore, the conductance of some native GABAA channels can be increased by diazepam or pentobarbital, which are effects not reported for expressed GABAA channels. GABARAP, a protein associated with native GABAA channels, has been reported to cause clustering of GABAA receptors and changes in channel kinetics. We have recorded single channel currents activated by GABA in L929 cells expressing α1, β1, and γ2S subunits of human GABAA receptors. Channel conductance was never higher than 40 pS and was not significantly increased by diazepam or pentobarbital, although open probability was increased. In contrast, in cells expressing the same three subunits together with GABARAP, channel conductance could be significantly higher than 40 pS, and channel conductance was increased by diazepam and pentobarbital. GABARAP caused clustering of receptors in L929 cells, and we suggest that there may be interactions between subunits of clustered GABAA receptors that make them open co-operatively to give high conductance “channels.” Recombinant channels may require the influence of GABARAP and perhaps other intracellular proteins to adopt a fuller repertoire of properties of native channels.
Pflügers Archiv: European Journal of Physiology | 1991
Bryndis Birnir; Donald D. F. Loo; Ernest M. Wright
Inward Na+ currents associated with the cloned intestinal Na+/glucose cotransporter expressed in Xenopus oocytes have been studied using the two-microelectrode voltage-clamp method. The steady-state current/voltage relations showed voltage-dependent (Vm from +20 to −75 mV) and relatively voltage-independent (Vm from −75 to −150 mV) regions. The apparent Imax for Na+ and glucose increased with negative membrane potentials, and the apparent K0.5 for glucose (K0.5Glc) depended on Vm and [Na]o. Increasing [Na]o from 7 to 110 mmol/l had the same effect in decreasing K0.5Glcfrom 0.44 to 0.03 mmol/l as increasing the Vm from −40 to −150 mV. The I/V curves under saturating conditions (20 mmol/l external sugars and 110 mmol/l [Na]o) were identical for d-glucose, d-galactose, α-methyl d-glucopyranoside and 3-O-methyl d-glucoside. The specificity of the cotransporter for sugars was: d-glucose, d-galactose, α-methyl d-glucopyranoside > 3-O-methyl d-glucoside ≫ d-xylose > d-allose ≫ d-mannose. Ki for phlorizin (≈ 10 μmol/l) was independent of Vm at saturating [Na]o. We conclude that a variety of sugars are transported by the cloned Na+/glucose cotransporter at the same maximal rate and that membrane potential affects both the maximal current and the apparent K0.5 of the cotransporter for Na+ and glucose.
PLOS ONE | 2013
Peter M. Zygmunt; Anna Ermund; Pouya Movahed; David A. Andersson; Charlotte Simonsen; Bo Jönsson; Anders Blomgren; Bryndis Birnir; Stuart Bevan; Alain Eschalier; Christophe Mallet; Ana Gomis; Edward D. Högestätt
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.