Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Buchang Zhang is active.

Publication


Featured researches published by Buchang Zhang.


Applied Microbiology and Biotechnology | 2014

GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea

Li-Li Yao; Cheng-Heng Liao; Gang Huang; Ying Zhou; Sébastien Rigali; Buchang Zhang; Bang-Ce Ye

Nitrogen source sensing, uptake, and assimilation are central for growth and development of microorganisms which requires the participation of a global control of nitrogen metabolism-associated genes at the transcriptional level. In soil-dwelling antibiotic-producing actinomycetes, this role is played by GlnR, an OmpR family regulator. In this work, we demonstrate that SACE_7101 is the ortholog of actinomycetes’ GlnR global regulators in the erythromycin producer Saccharopolyspora erythraea. Indeed, the chromosomal deletion of SACE_7101 severely affects the viability of S. erythraea when inoculated in minimal media supplemented with NaNO3, NaNO2, NH4Cl, glutamine, or glutamate as sole nitrogen source. Combination of in silico prediction of cis-acting elements, subsequent in vitro (through gel shift assays) and in vivo (real-time reverse transcription polymerase chain reaction) validations of the predicted target genes revealed a very large GlnR regulon aimed at adapting the nitrogen metabolism of S. erythraea. Indeed, enzymes/proteins involved in (i) uptake and assimilation of ammonium, (ii) transport and utilization of urea, (iii) nitrite/nitrate, (iv) glutamate/glutamine, (v) arginine metabolism, (vi) nitric oxide biosynthesis, and (vii) signal transduction associated with the nitrogen source supplied have at least one paralog gene which expression is controlled by GlnR. Our work highlights a GlnR-binding site consensus sequence (t/gna/cAC-n6-GaAAc) which is similar although not identical to the consensus sequences proposed for other actinomycetes. Finally, we discuss the distinct and common features of the GlnR-mediated transcriptional control of nitrogen metabolism between S. erythraea and the model organism Streptomyces coelicolor.


Microbial Cell Factories | 2014

Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea

Hang Wu; Meng Chen; Yongrong Mao; Weiwei Li; Jingtao Liu; Xunduan Huang; Ying Zhou; Bang-Ce Ye; Lixin Zhang; David T. Weaver; Buchang Zhang

BackgroundSaccharopolyspora erythraea was extensively utilized for the industrial-scale production of erythromycin A (Er-A), a macrolide antibiotic commonly used in human medicine. Yet, S. erythraea lacks regulatory genes in the erythromycin biosynthetic gene (ery) cluster, hampering efforts to enhance Er-A production via the engineering of regulatory genes.ResultsBy the chromosome gene inactivation technique based on homologous recombination with linearized DNA fragments, we have inactivated a number of candidate TetR family transcriptional regulators (TFRs) and identified one TFR (SACE_7301) positively controlling erythromycin biosynthesis in S. erythraea A226. qRT-PCR and EMSA analyses demonstrated that SACE_7301 activated the transcription of erythromycin biosynthetic gene eryAI and the resistance gene ermE by interacting with their promoter regions with low affinities, similar to BldD (SACE_2077) previously identified to regulate erythromycin biosynthesis and morphological differentiation. Therefore, we designed a strategy for overexpressing SACE_7301 with 1 to 3 extra copies under the control of PermE* in A226. Following up-regulated transcriptional expression of SACE_7301, eryAI and ermE, the SACE_7301-overexpressed strains all increased Er-A production over A226 proportional to the number of copies. Likewise, when SACE_7301 was overexpressed in an industrial S. erythraea WB strain, Er-A yields of the mutants WB/7301, WB/2×7301 and WB/3×7301 were respectively increased by 17%, 29% and 42% relative to that of WB. In a 5 L fermentor, Er-A accumulation increased to 4,230 mg/L with the highest-yield strain WB/3×7301, an approximately 27% production improvement over WB (3,322 mg/L).ConclusionsWe have identified and characterized a TFR, SACE_7301, in S. erythraea that positively regulated erythromycin biosynthesis, and overexpression of SACE_7301 in wild-type and industrial S. erythraea strains enhanced Er-A yields. This study markedly improves our understanding of the unusual regulatory mechanism of erythromycin biosynthesis, and provides a novel strategy towards Er-A overproduction by engineering transcriptional regulators of S. erythraea.


Metabolic Engineering | 2017

Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea.

Jing Liu; Yunfu Chen; Weiwei Wang; Min Ren; Panpan Wu; Yansheng Wang; Changrun Li; Lixin Zhang; Hang Wu; David T. Weaver; Buchang Zhang

Leucine-responsive regulatory proteins (Lrps) are a group of transcriptional regulators that regulate diverse cellular processes in bacteria and archaea. However, the regulatory role of Lrps in antibiotic biosynthesis remains poorly understood. In this study, we show that SACE_5388, an Lrp family regulator named as SACE_Lrp, is an efficient regulator for transporting and catabolizing branched-chain amino acids (BCAAs), playing an important role in regulating erythromycin production in Saccharopolyspora erythraea. SACE_Lrp directly controlled the expression of the divergently transcribed SACE_5387-5386 operon putatively encoding a BCAA ABC transporter by interacting with the intergenic region between SACE_Lrp and SACE_5387 (SACE_Lrp-5387-int), and indirectly controlled the expression of ilvE putatively encoding an aminotransferase catabolizing BCAAs. BCAA catabolism is one source of the precursors for erythromycin biosynthesis. Lysine and arginine promoted the dissociation of SACE_Lrp from SACE_Lrp -5387-int, whereas histidine increased their binding. Gene disruption of SACE_Lrp (ΔSACE_Lrp) in S. erythraea A226 resulted in a 25% increase in erythromycin production, while overexpression of SACE_5387-5386 in A226 enhanced erythromycin production by 36%. Deletion of SACE_Lrp (WBΔSACE_Lrp) in the industrial strain S. erythraea WB enhanced erythromycin production by 19%, and overexpression of SACE_5387-5386 in WBΔSACE_Lrp (WBΔSACE_Lrp/5387-5386) increased erythromycin production by 41% compared to WB. Additionally, supplement of 10mM valine to WBΔSACE_Lrp/5387-5386 culture further increased total erythromycin production up to 48%. In a 5-L fermenter, the erythromycin accumulation in the engineered strain WBΔSACE_Lrp/5387-5386 with 10mM extra valine in the industrial culture media reached 5001mg/L, a 41% increase over 3503mg/L of WB. These insights into the molecular regulation of antibiotic biosynthesis by SACE_Lrp in S. erythraea are instrumental in increasing industrial production of secondary metabolites.


Applied Microbiology and Biotechnology | 2017

Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes

Sitong Meng; Hang Wu; Lei Wang; Buchang Zhang; Linquan Bai

Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.


Applied Microbiology and Biotechnology | 2017

Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor

Jing Liu; Jie Li; Hong Dong; Yunfu Chen; Yansheng Wang; Hang Wu; Changrun Li; David T. Weaver; Lixin Zhang; Buchang Zhang

Lrp/AsnC family regulators have been found in many bacteria as crucial regulators controlling diverse cellular processes. By genomic alignment, we found that SCO3361, an Lrp/AsnC family protein from Streptomyces coelicolor, shared the highest similarity to the SACE_Lrp from Saccharopolyspora erythraea. Deletion of SCO3361 led to dramatic reduction in actinorhodin (Act) production and delay in aerial mycelium formation and sporulation on solid media. Dissection of the mechanism underlying the function of SCO3361 in Act production revealed that it altered the transcription of the cluster-situated regulator gene actII-ORF4 by directly binding to its promoter. SCO3361 was an auto-regulator and simultaneously activated the transcription of its adjacent divergently transcribed gene SCO3362. SCO3361 affected aerial hyphae formation and sporulation of S. coelicolor by activating the expression of amfC, whiB, and ssgB. Phenylalanine and cysteine were identified as the effector molecules of SCO3361, with phenylalanine reducing the binding affinity, whereas cysteine increasing it. Moreover, interactional regulation between SCO3361 and SACE_Lrp was discovered for binding to each other’s target gene promoter in this work. Our findings indicate that SCO3361 functions as a pleiotropic regulator controlling secondary metabolism and morphological development in S. coelicolor.


Synthetic and Systems Biotechnology | 2016

Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea

Hang Wu; Yansheng Wang; Li Yuan; Yongrong Mao; Weiwei Wang; Lin Zhu; Panpan Wu; Chengzhang Fu; Rolf Müller; David T. Weaver; Lixin Zhang; Buchang Zhang

Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.


Microbial Pathogenesis | 2016

Up-regulation of CYLD enhances Listeria monocytogenes induced apoptosis in THP-1 cells

Changzhi Xu; Ling Yang; Yuan Yuan; Fei Du; Shumin Wang; Xiangfang Wang; Lin Zhu; Buchang Zhang; David T. Weaver

Listeria monocytogenes (Lm), a facultative anaerobic gram-positive bacterium, causes listeriosis. Immune cell apoptosis is considered to be one pathogenic factor for listeriosis. As a deubiquitinase, CYLD is an important regulator both in innate immune response and apoptosis by negatively modulating NF-κB pathway. However the role of CYLD in Lm induced apoptosis remains unclear. Here we found that CYLD is significantly up-regulated in macrophages upon its infection. There is a moderate decrease in Lm proliferation and apoptotic cells in siRNA-induced CYLD knockdown THP-1 cells. Thereby CYLD may be involved in cell apoptosis mediated by Lm infection and its proliferation.


Journal of Industrial Microbiology & Biotechnology | 2018

Enhanced lincomycin production by co-overexpression of metK1 and metK2 in Streptomyces lincolnensis

Yurong Xu; Guoqing Tan; Meilan Ke; Jie Li; Yaqian Tang; Sitong Meng; Jingjing Niu; Yansheng Wang; Ruihua Liu; Hang Wu; Linquan Bai; Lixin Zhang; Buchang Zhang

Streptomyces lincolnensis is generally utilized for the production of lincomycin A (Lin-A), a clinically useful antibiotic to treat Gram-positive bacterial infections. Three methylation steps, catalyzed by three different S-adenosylmethionine (SAM)-dependent methyltransferases, are required in the biosynthesis of Lin-A, and thus highlight the significance of methyl group supply in lincomycin production. In this study, we demonstrate that externally supplemented SAM cannot be taken in by cells and therefore does not enhance Lin-A production. Furthermore, bioinformatics and in vitro enzymatic assays revealed there exist two SAM synthetase homologs, MetK1 (SLCG_1651) and MetK2 (SLCG_3830) in S. lincolnensis that could convert l-methionine into SAM in the presence of ATP. Even though we attempted to inactivate metK1 and metK2, only metK2 was deleted in S. lincolnensis LCGL, named as ΔmetK2. Following a reduction of the intracellular SAM concentration, ΔmetK2 mutant exhibited a significant decrease of Lin-A in comparison to its parental strain. Individual overexpression of metK1 or metK2 in S. lincolnensis LCGL either elevated the amount of intracellular SAM, concomitant with 15% and 22% increase in Lin-A production, respectively. qRT-PCR assays showed that overexpression of either metK1 or metK2 increased the transcription of lincomycin biosynthetic genes lmbA and lmbR, and regulatory gene lmbU, indicating SAM may also function as a transcriptional activator. When metK1 and metK2 were co-expressed, Lin-A production was increased by 27% in LCGL, while by 17% in a high-yield strain LA219X.


Journal of Industrial Microbiology & Biotechnology | 2018

Corrections to: Enhanced lincomycin production by co‑overexpression of metK1 and metK2 in Streptomyces lincolnensis

Yurong Xu; Guoqing Tan; Meilan Ke; Jie Li; Yaqian Tang; Sitong Meng; Jingjing Niu; Yansheng Wang; Ruihua Liu; Hang Wu; Linquan Bai; Lixin Zhang; Buchang Zhang

In the online published article, row value “pIB139-metK1-metK2” in table 1 has been processed incorrectly. The correct table is given below


Applied Microbiology and Biotechnology | 2018

Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells

Yafang Lu; Qin Zhou; Qianqian Han; Pengfei Wu; Lanlan Zhang; Lin Zhu; David T. Weaver; Changzhi Xu; Buchang Zhang

Chinese hamster ovary (CHO) cells are promising host engineering cells for industry manufacturing of therapeutic antibodies. However, cell death due to apoptosis remains a huge challenge to augment antibody production, and developing CHO cells with enhanced anti-apoptosis and proliferation ability is fundamental for cell line development and high-yielding bioprocesses. Deubiquitinase cylindromatosis (CYLD) has been proved to be a tumor suppressor by negatively regulating NF-κB and Wnt/β-catenin signaling pathways. Its mutation or deletion is a common chromosome variation in several types of cancers. Here, we engineered CHO CYLD−/− cells by CRISPR-Cas9 editing technology. These cells displayed stronger cell proliferation and anti-apoptosis ability compared to parental cells. Three antibody expression plasmid kits were transiently transfected into these cells. Our data showed that inactivation of CYLD increased the highest titers of rituximab, Herceptin, and one bispecific antibody by 105, 63, and 228%, respectively. Reversely, overexpression of CYLD could promote cell apoptosis, whereas inhibiting cell proliferation and antibody production. Furthermore, inhibition of CYLD in CHO cells stably expressing an IgG antibody (CHO-IgG) achieved about 50% increase in product titer compared to parental cells. Meanwhile, inhibition of CYLD did not affect the quality of antibody. Thus, our data demonstrated that inactivation of CYLD could promote CHO cell proliferation, anti-apoptosis ability, and subsequent antibody production, suggesting that CYLD is a potential functional target for CHO cell engineering.

Collaboration


Dive into the Buchang Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linquan Bai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bang-Ce Ye

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge