Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Buddhi Wijesiri is active.

Publication


Featured researches published by Buddhi Wijesiri.


Science of The Total Environment | 2015

Process variability of pollutant build-up on urban road surfaces

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Knowledge of the pollutant build-up process is a key requirement for developing stormwater pollution mitigation strategies. In this context, process variability is a concept which needs to be understood in-depth. Analysis of particulate build-up on three road surfaces in an urban catchment confirmed that particles <150 μm and >150 μm have characteristically different build-up patterns, and these patterns are consistent over different field conditions. Three theoretical build-up patterns were developed based on the size-fractionated particulate build-up patterns, and these patterns explain the variability in particle behavior and the variation in particle-bound pollutant load and composition over the antecedent dry period. Behavioral variability of particles <150 μm was found to exert the most significant influence on the build-up process variability. As characterization of process variability is particularly important in stormwater quality modeling, it is recommended that the influence of behavioral variability of particles <150 μm on pollutant build-up should be specifically addressed. This would eliminate model deficiencies in the replication of the build-up process and facilitate the accounting of the inherent process uncertainty, and thereby enhance the water quality predictions.


Science of The Total Environment | 2015

Influence of pollutant build-up on variability in wash-off from urban road surfaces.

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Variability in the pollutant wash-off process is a concept which needs to be understood in-depth in order to better assess the outcomes of stormwater quality models, and thereby strengthen stormwater pollution mitigation strategies. Current knowledge about the wash-off process does not extend to a clear understanding of the influence of the initially available pollutant build-up on the variability of the pollutant wash-off load and composition. Consequently, pollutant wash-off process variability is poorly characterised in stormwater quality models, which can result in inaccurate stormwater quality predictions. Mathematical simulation of particulate wash-off from three urban road surfaces confirmed that the wash-off load of particle size fractions < 150 μm and > 150 μm after a storm event vary with the build-up of the respective particle size fractions available at the beginning of the storm event. Furthermore, pollutant load and composition associated with the initially available build-up of < 150 μm particles predominantly influence the variability in washed-off pollutant load and composition. The influence of the build-up of pollutants associated with > 150 μm particles on wash-off process variability is significant only for relatively shorter duration storm events.


Water Research | 2016

Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review.

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Accurate prediction of stormwater quality is essential for developing effective pollution mitigation strategies. The use of models incorporating simplified mathematical replications of pollutant processes is the common practice for determining stormwater quality. However, an inherent process uncertainty arises due to the intrinsic variability associated with pollutant processes, which has neither been comprehensively understood, nor well accounted for in uncertainty assessment of stormwater quality modelling. This review provides the context for defining and quantifying the uncertainty associated with pollutant build-up and wash-off on urban impervious surfaces based on the hypothesis that particle size is predominant in influencing process variability. Critical analysis of published research literature brings scientific evidence together in order to establish the fact that particle size changes with time, and different sized particles exhibit distinct behaviour during build-up and wash-off, resulting in process variability. Analysis of the different adsorption behaviour of particles confirmed that the variations in pollutant load and composition are influenced by particle size. Particle behaviour and variations in pollutant load and composition are related due to the strong affinity of pollutants such as heavy metals and hydrocarbons for specific particle size ranges. As such, the temporal variation in particle size is identified as the key to establishing a basis for assessing build-up and wash-off process uncertainty. Therefore, accounting for pollutant build-up and wash-off process variability, which is influenced by particle size, would facilitate the assessment of the uncertainty associated with modelling outcomes. Furthermore, the review identified fundamental knowledge gaps where further research is needed in relation to: (1) the aggregation of particles suspended in the atmosphere during build-up; (2) particle re-suspension during wash-off; (3) pollutant re-adsorption by different particle size fractions; and (4) development of evidence-based techniques for assessing uncertainty; and (5) methods for translating the knowledge acquired from the investigation of process mechanisms at small scale into catchment scale for stormwater quality modelling.


Water Research | 2016

Influence of uncertainty inherent to heavy metal build-up and wash-off on stormwater quality.

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Uncertainty inherent to heavy metal build-up and wash-off stems from process variability. This results in inaccurate interpretation of stormwater quality model predictions. The research study has characterised the variability in heavy metal build-up and wash-off processes based on the temporal variations in particle-bound heavy metals commonly found on urban roads. The study outcomes found that the distribution of Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb were consistent over particle size fractions <150 μm and >150 μm, with most metals concentrated in the particle size fraction <150 μm. When build-up and wash-off are considered as independent processes, the temporal variations in these processes in relation to the heavy metals load are consistent with variations in the particulate load. However, the temporal variations in the load in build-up and wash-off of heavy metals and particulates are not consistent for consecutive build-up and wash-off events that occur on a continuous timeline. These inconsistencies are attributed to interactions between heavy metals and particulates <150 μm and >150 μm, which are influenced by particle characteristics such as organic matter content. The behavioural variability of particles determines the variations in the heavy metals load entrained in stormwater runoff. Accordingly, the variability in build-up and wash-off of particle-bound pollutants needs to be characterised in the description of pollutant attachment to particulates in stormwater quality modelling. This will ensure the accounting of process uncertainty, and thereby enhancing the interpretation of the outcomes derived from modelling studies.


Science of The Total Environment | 2015

Incorporating process variability into stormwater quality modelling

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Process variability in pollutant build-up and wash-off generates inherent uncertainty that affects the outcomes of stormwater quality models. Poor characterisation of process variability constrains the accurate accounting of the uncertainty associated with pollutant processes. This acts as a significant limitation to effective decision making in relation to stormwater pollution mitigation. The study undertaken developed three theoretical scenarios based on research findings that variations in particle size fractions <150 μm and >150 μm during pollutant build-up and wash-off primarily determine the variability associated with these processes. These scenarios, which combine pollutant build-up and wash-off processes that takes place on a continuous timeline, are able to explain process variability under different field conditions. Given the variability characteristics of a specific build-up or wash-off event, the theoretical scenarios help to infer the variability characteristics of the associated pollutant process that follows. Mathematical formulation of the theoretical scenarios enables the incorporation of variability characteristics of pollutant build-up and wash-off processes in stormwater quality models. The research study outcomes will contribute to the quantitative assessment of uncertainty as an integral part of the interpretation of stormwater quality modelling outcomes.


Environmental Pollution | 2018

Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: a Bayesian Network approach

Buddhi Wijesiri; Kaveh Deilami; James McGree; Ashantha Goonetilleke

Urban water pollution poses risks of waterborne infectious diseases. Therefore, in order to improve urban liveability, effective pollution mitigation strategies are required underpinned by predictions generated using water quality models. However, the lack of reliability in current modelling practices detrimentally impacts planning and management decision making. This research study adopted a novel approach in the form of Bayesian Networks to model urban water quality to better investigate the factors that influence risks to human health. The application of Bayesian Networks was found to enhance the integration of quantitative and qualitative spatially distributed data for analysing the influence of environmental and anthropogenic factors using three surrogate indicators of human health risk, namely, turbidity, total nitrogen and fats/oils. Expert knowledge was found to be of critical importance in assessing the interdependent relationships between health risk indicators and influential factors. The spatial variability maps of health risk indicators developed enabled the initial identification of high risk areas in which flooding was found to be the most significant influential factor in relation to human health risk. Surprisingly, population density was found to be less significant in influencing health risk indicators. These high risk areas in turn can be subjected to more in-depth investigations instead of the entire region, saving time and resources. It was evident that decision making in relation to the design of pollution mitigation strategies needs to account for the impact of landscape characteristics on water quality, which can be related to risk to human health.


Water Research | 2016

Assessing uncertainty in stormwater quality modelling

Buddhi Wijesiri; Prasanna Egodawatta; James McGree; Ashantha Goonetilleke

Designing effective stormwater pollution mitigation strategies is a challenge in urban stormwater management. This is primarily due to the limited reliability of catchment scale stormwater quality modelling tools. As such, assessing the uncertainty associated with the information generated by stormwater quality models is important for informed decision making. Quantitative assessment of build-up and wash-off process uncertainty, which arises from the variability associated with these processes, is a major concern as typical uncertainty assessment approaches do not adequately account for process uncertainty. The research study undertaken found that the variability of build-up and wash-off processes for different particle size ranges leads to processes uncertainty. After variability and resulting process uncertainties are accurately characterised, they can be incorporated into catchment stormwater quality predictions. Accounting of process uncertainty influences the uncertainty limits associated with predicted stormwater quality. The impact of build-up process uncertainty on stormwater quality predictions is greater than that of wash-off process uncertainty. Accordingly, decision making should facilitate the designing of mitigation strategies which specifically addresses variations in load and composition of pollutants accumulated during dry weather periods. Moreover, the study outcomes found that the influence of process uncertainty is different for stormwater quality predictions corresponding to storm events with different intensity, duration and runoff volume generated. These storm events were also found to be significantly different in terms of the Runoff-Catchment Area ratio. As such, the selection of storm events in the context of designing stormwater pollution mitigation strategies needs to take into consideration not only the storm event characteristics, but also the influence of process uncertainty on stormwater quality predictions.


Environmental Pollution | 2017

Influence of traffic on build-up of polycyclic aromatic hydrocarbons on urban road surfaces: A Bayesian network modelling approach

Yingxia Li; Ziliang Jia; Buddhi Wijesiri; Ningning Song; Ashantha Goonetilleke

Due to their carcinogenic effects, Polycyclic Aromatic Hydrocarbons (PAHs) deposited on urban surfaces are a major concern in the context of stormwater pollution. However, the design of effective pollution mitigation strategies is challenging due to the lack of reliability in stormwater quality modelling outcomes. Current modelling approaches do not adequately replicate the interdependencies between pollutant processes and their influential factors. Using Bayesian Network modelling, this research study characterised the influence of vehicular traffic on the build-up of the sixteen US EPA classified priority PAHs. The predictive analysis was conditional on the structure of the proposed BN, which can be further improved by including more variables. This novel modelling approach facilitated the characterisation of the influence of traffic as a source of origin and also as a key factor that influences the re-distribution of PAHs, with positive or negative relationship between traffic volume and PAH build-up. It was evident that the re-distribution of particle-bound PAHs is determined by the particle size rather than the chemical characteristics such as volatility. Moreover, compared to commercial and residential land uses, mostly industrial land use contributes to the PAHs load released to the environment. Carcinogenic PAHs in industrial areas are likely to be associated with finer particles, while PAHs, which are not classified as human carcinogens, are likely to be found in the coarser particle fraction.


Journal of Hazardous Materials | 2018

Understanding re-distribution of road deposited particle-bound pollutants using a Bayesian Network (BN) approach

An Liu; Buddhi Wijesiri; Nian Hong; Panfeng Zhu; Prasanna Egodawatta; Ashantha Goonetilleke

Road deposited pollutants (build-up) are continuously re-distributed by external factors such as traffic and wind turbulence, influencing stormwater runoff quality. However, current stormwater quality modelling approaches do not account for the re-distribution of pollutants. This undermines the accuracy of stormwater quality predictions, constraining the design of effective stormwater treatment measures. This study, using over 1000 data points, developed a Bayesian Network modelling approach to investigate the re-distribution of pollutant build-up on urban road surfaces. BTEX, which are a group of highly toxic pollutants, was the case study pollutants. Build-up sampling was undertaken in Shenzhen, China, using a dry and wet vacuuming method. The research outcomes confirmed that the vehicle type and particle size significantly influence the re-distribution of particle-bound BTEX. Compared to heavy-duty traffic in commercial areas, light-duty traffic dominates the re-distribution of particles of all size ranges. In industrial areas, heavy-duty traffic re-distributes particles >75 μm, and light-duty traffic re-distributes particles <75 μm. In residential areas, light-duty traffic re-distributes particles >300 μm and <75 μm and heavy-duty traffic re-distributes particles in the 300-150 μm range. The study results provide important insights to improve stormwater quality modelling and the interpretation of modelling outcomes, contributing to safeguard the urban water environment.


Environmental Pollution | 2018

Influence of urbanisation characteristics on the variability of particle-bound heavy metals build-up: A comparative study between China and Australia

Buddhi Wijesiri; An Liu; Chandima Gunawardana; Nian Hong; Panfeng Zhu; Yuntao Guan; Ashantha Goonetilleke

Heavy metal pollution of urban stormwater poses potential risks to human and ecosystem health. The design of reliable pollution mitigation strategies requires reliable stormwater modelling approaches. Current modelling practices do not consider the influence of urbanisation characteristics on stormwater quality. This could undermine the accuracy of stormwater quality modelling results. This research study used a database consisting of over 1000 datasets to compare the characteristics of heavy metal build-up (one of the most important stormwater pollutant processes) on urban surfaces under the influence of anthropogenic and natural factors specific to different urban regions from China (Shenzhen) and Australia (Gold Coast), using Bayesian Networks. The outcomes show that the differences in heavy metals build-up loads between the two regions (mean value for Shenzhen - mean value for Gold Coast)/mean value for Shenzhen) were 0.45 (Al), 0.88 (Cr), 0.99 (Mn), 0.68 (Fe), 0.98 (Ni), 0.24 (Cu), 0.47 (Zn) and 0.13 (Pb), respectively. The research outcomes also confirmed that the influence of traffic on the build-up of different sized particles varies between Shenzhen and Gold Coast, and traffic plays distinct roles as a source and as a factor that drives heavy metal re-distribution. The road surface roughness was also found to influence build-up process differently between the two regions. More importantly, the assessment of inherent process uncertainty revealed that heavy metal build-up between different road sites in Shenzhen varies over a wider range than in Gold Coast. The study highlighted a clear distinction in the influence of sources and key anthropogenic factors on the variability of particle-bound heavy metals build-up between geographically different urban regions. The study outcomes provide new knowledge to enhance the accuracy of urban stormwater quality modelling.

Collaboration


Dive into the Buddhi Wijesiri's collaboration.

Top Co-Authors

Avatar

Ashantha Goonetilleke

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

James McGree

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Prasanna Egodawatta

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kaveh Deilami

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

An Liu

Shenzhen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingxia Li

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Ziliang Jia

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Chandima Gunawardana

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge