Buddhini Perera
Gunma University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Buddhini Perera.
Cancer Research | 2016
Kazuya Yamada; Akihiko Uchiyama; Akihito Uehara; Buddhini Perera; Sachiko Ogino; Yoko Yokoyama; Yuko Takeuchi; Mark C. Udey; Osamu Ishikawa; Sei-ichiro Motegi
Secretion of the powerful angiogenic factor MFG-E8 by pericytes can bypass the therapeutic effects of anti-VEGF therapy, but the mechanisms by which MFG-E8 acts are not fully understood. In this study, we investigated how this factor acts to promote the growth of melanomas that express it. We found that mouse bone marrow-derived mesenchymal stromal cells (MSC) expressed a substantial amount of MFG-E8. To assess its expression from this cell type, we implanted melanoma cells and MSC derived from wild type (WT) or MFG-E8 deficient [knockout (KO)] into mice and monitored tumor growth. Tumor growth and M2 macrophages were each attenuated in subjects coimplanted with KO-MSC compared with WT-MSC. In both xenograft tumors and clinical specimens of melanoma, we found that MFG-E8 expression was heightened near blood vessels where MSC could be found. Through in vitro assays, we confirmed that WT-MSC-conditioned medium was more potent at inducing M2 macrophage polarization, compared with KO-MSC-conditioned medium. VEGF and ET-1 expression in KO-MSC was significantly lower than in WT-MSC, correlating in vivo with reduced tumor growth and numbers of pericytes and M2 macrophages within tumors. Overall, our results suggested that MFG-E8 acts at two levels, by increasing VEGF and ET-1 expression in MSC and by enhancing M2 polarization of macrophages, to increase tumor angiogenesis. Cancer Res; 76(14); 4283-92. ©2016 AACR.
Journal of Investigative Dermatology | 2015
Akihiko Uchiyama; Kazuya Yamada; Buddhini Perera; Sachiko Ogino; Yoko Yokoyama; Yuko Takeuchi; Osamu Ishikawa; Sei-ichiro Motegi
We recently demonstrated that the secreted glycoprotein and integrin-ligand MFG-E8 promotes cutaneous wound healing by enhancing angiogenesis. Several studies have identified potential roles for MFG-E8 in regulation of ischemia-reperfusion (I/R) injury in the brain, kidney, and liver. Our objective was to assess the role of MFG-E8 in the formation of skin ulcers using a murine model of cutaneous I/R injury-cutaneous pressure ulcers. Cutaneous I/R was performed by trapping the dorsal skin between two magnetic plates for 12 hours, followed by plate removal. Expression of MFG-E8 increased in the dermis during ischemia, and then decreased after reperfusion. Administration of recombinant (r)MFG-E8 in I/R areas at the beginning of reperfusion significantly inhibited the formation of cutaneous pressure ulcers, and the number of CD31(+) vessel and NG2(+) pericytes in wounds were increased in I/R mice treated with rMFG-E8. The number of M1 macrophages and the amount of proinflammatory mediators monocyte chemotactic protein-1,induced nitric oxide synthase, IL-6, tumor necrosis factor-α, and IL-1β in the wound area were reduced by the administration of rMFG-E8. We conclude that MFG-E8 may inhibit the formation of pressure ulcers induced by cutaneous I/R injury by regulating angiogenesis and inflammation. Exogenous application of MFG-E8 might have therapeutic potential for cutaneous I/R injuries, including decubitus ulcers and Raynauds phenomenon-induced digital ulcers.
Scientific Reports | 2015
Akihiko Uchiyama; Kazuya Yamada; Buddhini Perera; Sachiko Ogino; Yoko Yokoyama; Yuko Takeuchi; Osamu Ishikawa; Sei-ichiro Motegi
Botulinum toxin A (BTX-A) blocks the release of acetylcholine vesicles into the synaptic space, and has been clinically used for aesthetic indications, neuromuscular disorders and hyperhidrosis. Several studies have demonstrated that BTX-A enhanced the blood flow and improved ischemia in animal models. Our objective was to assess the effects of BTX-A on cutaneous ischemia-reperfusion (I/R) injuries, mimicking decubitus ulcers. The administration of BTX-A in I/R areas significantly inhibited the formation of decubitus-like ulcer in cutaneous I/R injury mouse model. The number of CD31+ vessels and αSMA+ pericytes or myofibroblasts in wounds were significantly increased in the I/R mice treated with BTX-A. The hypoxic area and the number of oxidative stress-associated DNA-damaged cells and apoptotic cells in the I/R sites were reduced by BTX-A administration. In an in vitro assay, BTX-A significantly prevented the oxidant-induced intracellular accumulation of reactive oxygen species (ROS) in vascular endothelial cells. Furthermore, the administration of BTX-A completely suppressed the ulcer formation in an intermittent short-time cutaneous I/R injury model. These results suggest that BTX-A might have protective effects against ulcer formation after cutaneous I/R injury by enhancing angiogenesis and inhibiting hypoxia-induced cellular damage. Exogenous application of BTX-A might have therapeutic potential for cutaneous I/R injuries.
Scientific Reports | 2016
Akihito Uehara; Sei-ichiro Motegi; Kazuya Yamada; Akihiko Uchiyama; Buddhini Perera; Sayaka Toki; Sachiko Ogino; Yoko Yokoyama; Yuko Takeuchi; Osamu Ishikawa
Raynauds phenomenon is frequently observed in systemic sclerosis (SSc) patients, and cold- or stress-induced norepinephrine (NE) has been speculated to be associated with vasoconstriction. Objective was to elucidate the role of NE in fibrosis in SSc. IL-6 is a potent stimulator of collagen production in fibroblasts. NE enhanced IL-6 production and proliferation more significantly in SSc fibroblasts than in normal fibroblasts. Furthermore, the production of IL-6 and phosphorylation of p38 in SSc fibroblasts was enhanced by adrenergic receptor (AR)β agonist, isoproterenol, but not ARα agonist, oxymetazoline. ARβ blocker, propranolol, inhibited NE-induced IL-6 production and phosphorylation of p38 in SSc fibroblasts. NE-induced IL-6 was significantly inhibited by p38 inhibitor, SB203580, suggesting that NE-induced phosphorylation of p38 via ARβ enhances IL-6 production in SSc fibroblasts. NE-induced phosphorylation of ERK1/2 via ARα inhibited IL-6 production in SSc fibroblasts. Combined treatment with NE and endothelin-1 resulted in an additive increase in IL-6 production in SSc fibroblasts. NE-induced IL-6/IL-6 receptor trans-signaling increased the production of collagen type I in SSc fibroblasts, and both propranolol and SB203580 inhibited NE-induced collagen production. These results suggest that cold exposure and/or emotional stress-induced NE might contribute to the skin fibrosis via potentiation of IL-6 production from fibroblasts in SSc.
Experimental Dermatology | 2016
Akihiko Uchiyama; Kazuya Yamada; Buddhini Perera; Sachiko Ogino; Yoko Yokoyama; Yuko Takeuchi; Osamu Ishikawa; Sei-ichiro Motegi
Ischaemia–reperfusion (I/R) is involved in the development of various organ diseases. There has been increasing evidence that cutaneous I/R injury is associated with the pathogenesis of pressure ulcers (PUs), especially at the early stage presenting as non‐blanchable erythema. However, there is no evidence‐based treatment for early‐stage PUs. Our objective was to assess the effects of topical steroid on the development of PUs after cutaneous I/R injury in mice. Cutaneous I/R was performed by trapping the dorsal skin between two magnetic plates for 12 h, followed by plate removal. Topical application of betamethasone butyrate propionate (BBP) in I/R areas significantly increased the size of PUs after I/R. The number of thromboses was increased, and CD31+ vessels were decreased in the I/R area treated with topical BBP. The number of oxidative stress‐associated DNA‐damaged cells and apoptotic cells in the I/R area was increased by topical BBP treatment. In addition, the mRNA level of NADPH oxidase 4 (Nox4), the essential enzyme that produces reactive oxygen species, was significantly increased and that of NF‐E2‐related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidant proteins, was inhibited in the I/R area treated by BBP. The number of CD68+ macrophages and the level of transforming growth factor‐beta in lesional skin were also decreased by BBP. These results suggest that a topical steroid might accelerate the formation of PUs induced by cutaneous I/R injury by aggravating oxidative stress‐induced tissue damage. Topical steroids might not be recommended for the treatment of acute‐phase decubitus ulcers.
Experimental Dermatology | 2016
Sei-ichiro Motegi; Akihiko Uchiyama; Kazuya Yamada; Sachiko Ogino; Yoko Yokoyama; Buddhini Perera; Yuko Takeuchi; Osamu Ishikawa
Atypical progeroid syndrome (APS), including atypical Werner syndrome (AWS), is a disorder of premature ageing caused by mutation of the lamin A gene, the same causal gene involved in Hutchinson‐Gilford syndrome (HGS). We previously reported the first Japanese case of APS/AWS with a LMNA mutation (p.D300N). Recently, it has been reported that UVA induced abnormal truncated form of lamin A, called progerin, as well as HGS‐like abnormal nuclear structures in normal human fibroblasts, being more frequent in the elderly, suggesting that lamin A may be involved in the regulation of photoageing. The objective of this study was to elucidate the sensitivity to cell damage induced by oxidative stress or UVA in fibroblasts from APS/AWS patient. Using immunofluorescence staining and flow cytometry analysis, the amount of early apoptotic cells and degree of intra‐cellular reactive oxygen species (ROS) generation were higher in H202‐ or UVA‐treated APS/AWS fibroblasts than in normal fibroblasts, suggesting that repeated UV exposure may induce premature ageing of the skin in APS/AWS patients and that protecting against sunlight is possibly important for delaying the emergence of APS/AWS symptoms. In addition, we demonstrated that H2O2‐, or UVA‐induced apoptosis and necrosis in normal and APS/AWS fibroblasts were enhanced by farnesyltransferase inhibitor (FTI) treatment, indicating that FTI might not be useful for treating our APS/AWS patient.
Scientific Reports | 2017
Sei-ichiro Motegi; Akiko Sekiguchi; Akihiko Uchiyama; Akihito Uehara; Chisako Fujiwara; Sahori Yamazaki; Buddhini Perera; Hideharu Nakamura; Sachiko Ogino; Yoko Yokoyama; Ryoko Akai; Takao Iwawaki; Osamu Ishikawa
Cutaneous ischemia-reperfusion (I/R) injury is associated with the early pathogenesis of cutaneous pressure ulcers (PUs). The objective of this study was to investigate the effect of mesenchymal stem cells (MSCs) injection on the formation of PUs after I/R injury and determine the underlying mechanisms. We found that the subcutaneous injection of MSCs into areas of I/R injured skin significantly suppressed the formation of PUs. I/R-induced vascular damage, hypoxia, oxidative DNA damage, and apoptosis were decreased by MSCs injection. Oxidative stress signals detected after I/R in OKD48 (Keap1-dependent oxidative stress detector, No-48-luciferase) mice were decreased by the injection of MSCs. In cultured fibroblasts, MSCs-conditioned medium significantly inhibited oxidant-induced reactive oxygen species (ROS) generation and apoptosis. Furthermore, endoplasmic reticulum (ER) stress signals detected after I/R in ERAI (ER stress-activated indicator) mice were also decreased by the injection of MSCs. These results suggest that the injection of MSCs might protect against the development of PUs after cutaneous I/R injury by reducing vascular damage, oxidative cellular damage, oxidative stress, ER stress, and apoptosis.
Journal of Dermatological Science | 2017
Akihiko Uchiyama; Sei-ichiro Motegi; Akiko Sekiguchi; Chisako Fujiwara; Buddhini Perera; Sachiko Ogino; Yoko Yokoyama; Osamu Ishikawa
BACKGROUND Diabetic wounds are intractable due to complex factors, such as the inhibition of angiogenesis, dysfunction of phagocytosis by macrophages and abnormal inflammatory responses. It is recognized that mesenchymal stem cells (MSCs) promote wound healing in diabetic mice. We previously demonstrated that MSCs produce large amounts of MFG-E8. OBJECT The objective was to ascertain the role of MSCs-derived MFG-E8 in murine diabetic wounds. METHODS MFG-E8 WT/KO MSCs or rMFG-E8 were subcutaneously injected around the wound in diabetic db/db mice, and wound areas were analyzed. Quantification of angiogenesis, infiltrating inflammatory cells, apoptotic cells at the wound area was performed by immunofluorescence staining and real-time PCR. Phagocytosis assay was performed using peritoneal macrophages from WT or db/db mice. RESULTS MFG-E8 expression in granulation tissue in diabetic mice was significantly reduced compared with that in non-diabetic mice. We next examined the effect of subcutaneous injection of MFG-E8 WT/KO MSCs around the wound. Diabetic wound healing was significantly accelerated by the injection of MSCs. Diabetic wound healing in MFG-E8 KO MSCs-injected wounds was significantly delayed compared to that in WT MSCs-injected wounds. The numbers of CD31+ EC and NG2+ pericytes, as well as M2 macrophages in wounds in KO MSCs-injected mice were significantly decreased. MFG-E8 WT MSCs treatment suppressed the number of apoptotic cells and TNF-α+ cells in wounds. In an in vitro assay, MFG-E8 WT MSCs-conditioned medium enhanced phagocytosis of apoptotic cells by peritoneal macrophages from diabetic mice. CONCLUSION MSCs-derived MFG-E8 might accelerate diabetic wound healing by promoting angiogenesis, the clearance of apoptotic cells, and the infiltration of M2 macrophages, and by suppressing inflammatory cytokines in wound area.
Journal of Dermatological Science | 2018
Akiko Sekiguchi; Sei-ichiro Motegi; Akihiko Uchiyama; Akihito Uehara; Chisako Fujiwara; Sahori Yamazaki; Buddhini Perera; Hideharu Nakamura; Sachiko Ogino; Yoko Yokoyama; Ryoko Akai; Takao Iwawaki; Osamu Ishikawa
BACKGROUND We previously identified that botulinum toxin A (BTX-A) suppressed pressure ulcer (PU) formation after cutaneous ischemia-reperfusion (I/R) injury; however, regulation of cutaneous I/R-induced oxidative and endoplasmic reticulum (ER) stress by BTX-B was not investigated. Additionally, the efficacy of BTX-B injection has never been examined. OBJECTIVE Objective was to assess the effects of BTX-B on the formation of PU by cutaneous I/R injury, and the regulation of oxidative and ER stress in I/R injury by BTX-B. METHODS BTX-B was subcutaneously injected into I/R area, and wound size, vascular damage, hypoxic area, and apoptotic cells in I/R area were analyzed. We evaluated the extent of oxidative and ER stress in I/R area by using OKD48 mice and ERAI mice, respectively, which enabled evaluating oxidative and ER stress through bioluminescence detection. RESULTS BTX-B injection significantly suppressed the formation of PU by cutaneous I/R injury. Cutaneous I/R-induced vascular damage, hypoxic area, and number of oxidative-damaged cells and apoptotic cells were suppressed by BTX-B injection. BTX-B administration significantly inhibited I/R-induced oxidative stress signal in OKD48 mice. BTX-B reduced the I/R-induced oxidative stress-associated factors. BTX-B significantly inhibited the oxidant-induced reactive oxygen species and apoptosis of endothelial cells and fibroblasts. BTX-B significantly inhibited I/R-induced ER stress signal in ERAI mice. Cutaneous I/R injury-induced ER stress-response factors and GRP78/BiP and CHOP-positive cells in I/R area were significantly decreased by BTX-B injection. CONCLUSION BTX-B injection might have protective effects against PU formation after cutaneous I/R injury by reducing vascular damage, hypoxia-induced oxidative and ER stress, and apoptosis.
Journal of Investigative Dermatology | 2017
Buddhini Perera; Akihiko Uchiyama; Akiko Sekiguchi; Chisako Fujiwara; Osamu Ishikawa; Sei-ichiro Motegi