Buffie Clodfelder-Miller
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Buffie Clodfelder-Miller.
Journal of Biological Chemistry | 2005
Buffie Clodfelder-Miller; Patrizia De Sarno; Anna A. Zmijewska; Ling Song; Richard S. Jope
Insulin regulates the phosphorylation and activities of Akt and glycogen synthase kinase-3 (GSK3) in peripheral tissues, but in the brain it is less clear how this signaling pathway is regulated in vivo and whether it is affected by diabetes. We found that Akt and GSK3 are sensitive to glucose, because fasting decreased and glucose administration increased by severalfold the phosphorylation of Akt and GSK3 in the cerebral cortex and hippocampus of non-diabetic mice. Brain Akt and GSK3 phosphorylation also increased after streptozotocin administration (3 days), which increased blood glucose and depleted blood insulin, indicating regulation by glucose availability even with deficient insulin. Changes in Akt and GSK3 phosphorylation and activities in epididymal fat were opposite to those of brain after streptozotocin treatment. Streptozotocin-induced hyperglycemia and increased brain Akt and GSK3 phosphorylation were reversed by lowering blood glucose with insulin administration. Long term hyperglycemia also increased brain Akt and GSK3 phosphorylation, both 4 weeks after streptozotocin and in db/db insulin-resistant mice. Thus, the Akt-GSK3 signaling pathway is regulated in mouse brain in vivo in response to physiological and pathological changes in insulin and glucose.
Journal of Chromatography A | 2011
Dipak Thakur; Tomas Rejtar; Dongdong Wang; Jonathan Bones; Sangwon Cha; Buffie Clodfelder-Miller; Elizabeth Richardson; Shemeica Binns; Sonika Dahiya; Dennis C. Sgroi; Barry L. Karger
Precise proteomic profiling of limited levels of disease tissue represents an extremely challenging task. Here, we present an effective and reproducible microproteomic workflow for sample sizes of only 10,000 cells that integrates selective sample procurement via laser capture microdissection (LCM), sample clean-up and protein level fractionation using short-range SDS-PAGE, followed by ultrasensitive LC-MS/MS analysis using a 10 μm i.d. porous layer open tubular (PLOT) column. With 10,000 LCM captured mouse hepatocytes for method development and performance assessment, only 10% of the in-gel digest, equivalent to ∼1000 cells, was needed per LC-MS/MS analysis. The optimized workflow was applied to the differential proteomic analysis of 10,000 LCM collected primary and metastatic breast cancer cells from the same patient. More than 1100 proteins were identified from each injection with >1700 proteins identified from three LCM samples of 10,000 cells from the same patient (1123 with at least two unique peptides). Label free quantitation (spectral counting) was performed to identify differential protein expression between the primary and metastatic cell populations. Informatics analysis of the resulting data indicated that vesicular transport and extracellular remodeling processes were significantly altered between the two cell types. The ability to extract meaningful biological information from limited, but highly informative cell populations demonstrates the significant benefits of the described microproteomic workflow.
Glia | 2009
Jenell M. Eckert; Stephanie J. Byer; Buffie Clodfelder-Miller; Steven L. Carroll
Malignant peripheral nerve sheath tumors (MPNSTs) are the most common malignancy associated with neurofibromatosis Type 1 (NF1). These Schwann cell lineage‐derived sarcomas aggressively invade adjacent nerve and soft tissue, frequently precluding surgical resection. Little is known regarding the mechanisms underlying this invasive behavior. We have shown that MPNSTs express neuregulin‐1 (NRG‐1) β isoforms, which promote Schwann cell migration during development, and NRG‐1α isoforms, whose effects on Schwann cells are poorly understood. Hypothesizing that NRG‐1β and/or NRG‐1α promote MPNST invasion, we found that NRG‐1β promoted MPNST migration in a substrate‐specific manner, markedly enhancing migration on laminin but not on collagen type I or fibronectin. The NRG‐1 receptors erbB3 and erbB4 were present in MPNST invadopodia (processes mediating invasion), partially colocalized with focal adhesion kinase and the laminin receptor β1‐integrin and coimmunoprecipitated with β1‐integrin. NRG‐1β stimulated human and murine MPNST cell migration and invasion in a concentration‐dependent manner in three‐dimensional migration assays, acting as a chemotactic factor. Both baseline and NRG‐1β‐induced migration were erbB‐dependent and required the action of MEK 1/2, SAPK/JNK, PI‐3 kinase, Src family kinases and ROCK‐I/II. In contrast, NRG‐1α had no effect on the migration and invasion of some MPNST lines and inhibited the migration of others. While NRG‐1β potently and persistently activated Erk 1/2, SAPK/JNK, Akt and Src family kinases, NRG‐1α did not activate Akt and activated these other kinases with kinetics distinct from those evident in NRG‐1β‐stimulated cells. These findings suggest that NRG‐1β enhances MPNST migration and that NRG‐1β and NRG‐1α differentially modulate this process.
Neurotoxicity Research | 2008
Taj D. King; Buffie Clodfelder-Miller; Keri A. Barksdale; Gautam N. Bijur
GSK3β is prominent for its role in apoptosis signaling and has been shown to be involved in Parkinson’s disease (PD) pathogenesis. The overall effects of GSK3β activity on cell fate are well-established, but the effects of mitochondrial GSK3β activity on mitochondrial function and cell fate are unknown. Here we selectively expressed constitutively active GSK3β within the mitochondria and found that this enhanced the apoptosis signaling activated by the PD-mimetic NADH:ubiquinone oxidoreductase (complex I) inhibitors 1-methyl-4-phenylpyri-dinium ion (MPP+) and rotenone. Additionally, expression of GSK3β in the mitochondria itself caused a significant decrease in complex I activity and ATP production. Increased mitochondrial GSK3β activity also increased reactive oxygen species production and perturbed the mitochondrial morphology. Conversely, chemical inhibitors of GSK3β inhibited MPP+- and rotenone-induced apoptosis, and attenuated the mitochondrial GSK3β-mediated impairment in complex I. These results indicate that unregulated mitochondrial GSK3β activity can mimic some of the mitochondrial insufficiencies found in PD pathology.
Neuro-oncology | 2011
Stephanie J. Byer; Jenell M. Eckert; Nicole M. Brossier; Buffie Clodfelder-Miller; Amy N. Turk; Andrew J. Carroll; John C. Kappes; Kurt R. Zinn; Jeevan K. Prasain; Steven L. Carroll
Few therapeutic options are available for malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1 (NF1). Guided by clinical observations suggesting that some NF1-associated nerve sheath tumors are hormonally responsive, we hypothesized that the selective estrogen receptor (ER) modulator tamoxifen would inhibit MPNST tumorigenesis in vitro and in vivo. To test this hypothesis, we examined tamoxifen effects on MPNST cell proliferation and survival, MPNST xenograft growth, and the mechanism by which tamoxifen impeded these processes. We found that 1-5 μM 4-hydroxy-tamoxifen induced MPNST cell death, whereas 0.01-0.1 μM 4-hydroxy-tamoxifen inhibited mitogenesis. Dermal and plexiform neurofibromas, MPNSTs, and MPNST cell lines expressed ERβ and G-protein-coupled ER-1 (GPER); MPNSTs also expressed estrogen biosynthetic enzymes. However, MPNST cells did not secrete 17β-estradiol, exogenous 17β-estradiol did not stimulate mitogenesis or rescue 4-hydroxy-tamoxifen effects on MPNST cells, and the steroidal antiestrogen ICI-182,780 did not mimic tamoxifen effects on MPNST cells. Further, ablation of ERβ and GPER had no effect on MPNST proliferation, survival, or tamoxifen sensitivity, indicating that tamoxifen acts via an ER-independent mechanism. Consistent with this hypothesis, inhibitors of calmodulin (trifluoperazine, W-7), another known tamoxifen target, recapitulated 4-hydroxy-tamoxifen effects on MPNST cells. Tamoxifen was also effective in vivo, demonstrating potent antitumor activity in mice orthotopically xenografted with human MPNST cells. We conclude that 4-hydroxy-tamoxifen inhibits MPNST cell proliferation and survival via an ER-independent mechanism. The in vivo effectiveness of tamoxifen provides a rationale for clinical trials in cases of MPNSTs.
Brain Research | 2016
Hirosato Kanda; Buffie Clodfelder-Miller; Jianguo G. Gu; Timothy J. Ness; Jennifer J. DeBerry
Pelvic nerve (PN) bladder primary afferent neurons were retrogradely labeled by intraparenchymal (IPar) microinjection of fluorescent tracer or intravesical (IVes) infusion of tracer into the bladder lumen. IPar and IVes techniques labeled two distinct populations of PN bladder neurons differentiated on the basis of dorsal root ganglion (DRG) soma labeling, dye distribution within the bladder, and intrinsic electrophysiological properties. IPar (Fast blue)- and IVes (DiI)-labeled neurons accounted for 91.5% (378.3±32.3) and 8% (33.0±26.0) of all labeled neurons, respectively (p<0.01), with only 2.0±1.2 neurons labeled by both techniques. When dyes were switched, IPar (DiI)- and IVes (Fast blue) labeled neurons accounted for 77.6% (103.0±25.8) and 22.4% (29.8±10.5), respectively (P<0.05), with 6.0±1.5 double-labeled neurons. Following IPar labeling, DiI was distributed throughout non-urothelial layers of the bladder. In contrast, dye was contained within the urothelium and occasionally the submucosa after IVes labeling. Electrophysiological properties of DiI-labeled IPar and IVes DRG neurons were characterized by whole-mount, in situ patch-clamp recordings. IPar- and IVes-labeled neurons differed significantly with respect to rheobase, input resistance, membrane capacitance, amplitude of inactivating and sustained K(+) currents, and rebound action potential firing, suggesting that the IVes population is more excitable. This study is the first to demonstrate that IVes labeling is a minimally invasive approach for retrograde labeling of PN bladder afferent neurons, to selectively identify urothelial versus non-urothelial bladder DRG neurons, and to elucidate electrophysiological properties of urothelial and non-urothelial afferents in an intact DRG soma preparation.
Frontiers in Oncology | 2014
Kathryn E. Royse; Degui Zhi; Michael G. Conner; Buffie Clodfelder-Miller; Vinodh Srinivasasainagendra; Laura K. Vaughan; Christine F. Skibola; David K. Crossman; Shawn Levy; Sadeep Shrestha
Genetic changes occurring in different stages of pre-cancer lesions reflect causal events initiating and promoting the progression to cancer. Co-existing pre-cancerous lesions including low- and high-grade squamous intraepithelial lesion (LGSIL and HGSIL), and adjacent “normal” cervical epithelium from six formalin-fixed paraffin-embedded samples were selected. Tissues from these 18 samples were isolated using laser-capture microdissection, RNA was extracted and sequenced. RNA-sequencing generated 2.4 billion raw reads in 18 samples, of which ~50.1% mapped to known and annotated genes in the human genome. There were 40 genes up-regulated and 3 down-regulated (normal to LGSIL) in at least one-third of the sample pairs (same direction and FDR p < 0.05) including S100A7 and KLK6. Previous studies have shown that S110A7 and KLK7 are up-regulated in several other cancers, whereas CCL18, CFTR, and SLC6A14, also differentially expressed in two samples, are up-regulated specifically in cervical cancer. These differentially expressed genes in normal to LGSIL progression were enriched in pathways related to epithelial cell differentiation, keratinocyte differentiation, peptidase, and extracellular activities. In progression from LGSIL to HGSIL, two genes were up-regulated and five down-regulated in at least two samples. Further investigations using co-existing samples, which account for all internal confounders, will provide insights to better understand progression of cervical pre-cancer.
Brain Research | 2017
Buffie Clodfelder-Miller; Hirosato Kanda; Jianguo G. Gu; Judy Creighton; Timothy J. Ness; Jennifer J. DeBerry
There is mounting evidence underscoring a role for the urothelium in urinary bladder sensation. Previous functional studies have identified bladder primary afferents with mechanosensitive properties suggesting urothelial innervation and/or communication. The current study identifies a group of urothelium-innervating afferent neurons in rat, and characterizes and compares the properties of these and non-urothelial afferent neuron populations. Lumbosacral (LS) primary afferent neurons were retrogradely labeled using intraparenchymal (IPar) microinjection or intravesical (IVes) infusion of tracer into the bladder. Using these techniques, separate populations of neurons were differentiated by dorsal root ganglion (DRG) somata labeling and dye distribution within the bladder. IPar- and IVes-labeled neurons accounted for 85.0% and 14.4% of labeled L6-S1 neurons (P < .001), respectively, with only 0.6% of neurons labeled by both techniques. Following IVes labeling, dye was contained only within the periurothelial bladder region in contrast to non-urothelial distribution of dye after IPar labeling. Electrophysiological characterization by in situ patch-clamp recordings from whole-mount DRG preparations indicated no significant difference in passive or active membrane properties of IPar and IVes DRG neurons. However, calcium imaging of isolated neurons indicates that a greater proportion of IPar- than IVes-labeled neurons express functional TRPA1 (45.7% versus 25.6%, respectively; P < .05). This study demonstrates that two anatomically distinct groups of LS bladder afferents can be identified in rat. Further studies of urothelial afferents and the phenotypic differences between non-/urothelial afferents may have important implications for normal and pathophysiological bladder sensory processing.
Neuroscience Letters | 2018
Timothy J. Ness; Cary DeWitte; Jamie McNaught; Buffie Clodfelder-Miller; Xin Su
Bilateral electrical pudendal nerve stimulation (bPNS) reduces bladder hypersensitivity in rat models of bladder pain and anecdotally reduces pain in humans with pelvic pain of urologic origin. The spinal neurochemical mechanisms of this antinociception are unknown. In the present study, bladder hypersensitivity was produced by neonatal bladder inflammation in rat pups coupled with a second inflammatory insult as an adult. Visceromotor responses (VMRs; abdominal muscle contractions) to urinary bladder distension (UBD) were used as a nociceptive endpoint under urethane-isoflurane anesthesia. bPNS consisted of bilateral biphasic electrical stimulation of the mixed motor/sensory component of the pudendal nerves. Following determination of the inhibitory effect of bPNS on VMRs, pharmacological antagonists were administered via an intrathecal catheter onto the lumbosacral spinal cord and bPNS effects on VMRs redetermined. bPNS resulted in statistically significant inhibition of VMRs to UBD in hypersensitive rats that was statistically reduced by the intrathecal administration of methysergide, WAY100636, CGP35348 and strychnine but was unaffected by naloxone, bicuculline, phentolamine, ondansetron and normal saline. This study suggests that inhibitory effects of bPNS may include serotonergic, GABA-B-ergic and glycinergic mechanisms suggesting the potential for interaction of the neuromodulatory effect with concommitant drug therapies.
The FASEB Journal | 2014
Buffie Clodfelder-Miller; Carey Dewitte; Shin Xu; Steve Doran; Sadis Matalon; Timothy J. Ness