Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bulbul Ahmed is active.

Publication


Featured researches published by Bulbul Ahmed.


Environmental Science & Technology | 2011

Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

Bin Cao; Bulbul Ahmed; David W. Kennedy; Zheming Wang; Liang Shi; Matthew J. Marshall; Jim K. Fredrickson; Nancy G. Isern; Paul D. Majors; Haluk Beyenal

The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.


Biotechnology and Bioengineering | 2010

In situ effective diffusion coefficient profiles in live biofilms using pulsed‐field gradient nuclear magnetic resonance

Ryan S. Renslow; Paul D. Majors; Jeffrey S. McLean; Jim K. Fredrickson; Bulbul Ahmed; Haluk Beyenal

Diffusive mass transfer in biofilms is characterized by the effective diffusion coefficient. It is well documented that the effective diffusion coefficient can vary by location in a biofilm. The current literature is dominated by effective diffusion coefficient measurements for distinct cell clusters and stratified biofilms showing this spatial variation. Regardless of whether distinct cell clusters or surface‐averaging methods are used, position‐dependent measurements of the effective diffusion coefficient are currently: (1) invasive to the biofilm, (2) performed under unnatural conditions, (3) lethal to cells, and/or (4) spatially restricted to only certain regions of the biofilm. Invasive measurements can lead to inaccurate results and prohibit further (time‐dependent) measurements which are important for the mathematical modeling of biofilms. In this study our goals were to: (1) measure the effective diffusion coefficient for water in live biofilms, (2) monitor how the effective diffusion coefficient changes over time under growth conditions, and (3) correlate the effective diffusion coefficient with depth in the biofilm. We measured in situ two‐dimensional effective diffusion coefficient maps within Shewanella oneidensis MR‐1 biofilms using pulsed‐field gradient nuclear magnetic resonance methods, and used them to calculate surface‐averaged relative effective diffusion coefficient (Drs) profiles. We found that (1) Drs decreased from the top of the biofilm to the bottom, (2) Drs profiles differed for biofilms of different ages, (3) Drs profiles changed over time and generally decreased with time, (4) all the biofilms showed very similar Drs profiles near the top of the biofilm, and (5) the Drs profile near the bottom of the biofilm was different for each biofilm. Practically, our results demonstrate that advanced biofilm models should use a variable effective diffusivity which changes with time and location in the biofilm. Biotechnol. Bioeng. 2010;106: 928–937.


Applied and Environmental Microbiology | 2012

Characterization of Mono- and Mixed-Culture Campylobacter jejuni Biofilms

Tuba Ica; Vildan Caner; Ozlem Istanbullu; Hung Duc Nguyen; Bulbul Ahmed; Douglas R. Call; Haluk Beyenal

ABSTRACT Campylobacter jejuni, one of the most common causes of human gastroenteritis, is a thermophilic and microaerophilic bacterium. These characteristics make it a fastidious organism, which limits its ability to survive outside animal hosts. Nevertheless, C. jejuni can be transmitted to both humans and animals via environmental pathways, especially through contaminated water. Biofilms may play a crucial role in the survival of the bacterium under unfavorable environmental conditions. The goal of this study was to investigate survival strategies of C. jejuni in mono- and mixed-culture biofilms. We grew monoculture biofilms of C. jejuni and mixed-culture biofilms of C. jejuni with Pseudomonas aeruginosa. We found that mono- and mixed-culture biofilms had significantly different structures and activities. Monoculture C. jejuni biofilms did not consume a measurable quantity of oxygen. Using a confocal laser scanning microscope (CLSM), we found that cells from monoculture biofilms were alive according to live/dead staining but that these cells were not culturable. In contrast, in mixed-culture biofilms, C. jejuni remained in a culturable physiological state. Monoculture C. jejuni biofilms could persist under lower flow rates (0.75 ml/min) but were unable to persist at higher flow rates (1 to 2.5 ml/min). In sharp contrast, mixed-culture biofilms were more robust and were unaffected by higher flow rates (2.5 ml/min). Our results indicate that biofilms provide an environmental refuge that is conducive to the survival of C. jejuni.


Environmental Microbiology | 2012

Biofilm shows spatially stratified metabolic responses to contaminant exposure

Bin Cao; Paul D. Majors; Bulbul Ahmed; Ryan S. Renslow; Crystal P. Silvia; Liang Shi; Staffan Kjelleberg; Jim K. Fredrickson; Haluk Beyenal

Biofilms are core to a range of biological processes, including the bioremediation of environmental contaminants. Within a biofilm population, cells with diverse genotypes and phenotypes coexist, suggesting that distinct metabolic pathways may be expressed based on the local environmental conditions in a biofilm. However, metabolic responses to local environmental conditions in a metabolically active biofilm interacting with environmental contaminants have never been quantitatively elucidated. In this study, we monitored the spatiotemporal metabolic responses of metabolically active Shewanella oneidensis MR-1 biofilms to U(VI) (uranyl, UO(2)(2+)) and Cr(VI) (chromate, CrO(4) (2-)) using non-invasive nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) approaches to obtain insights into adaptation in biofilms during biofilm-contaminant interactions. While overall biomass distribution was not significantly altered upon exposure to U(VI) or Cr(VI), MRI and spatial mapping of the diffusion revealed localized changes in the water diffusion coefficients in the biofilms, suggesting significant contaminant-induced changes in structural or hydrodynamic properties during bioremediation. Finally, we quantitatively demonstrated that the metabolic responses of biofilms to contaminant exposure are spatially stratified, implying that adaptation in biofilms is custom-developed based on local microenvironments.


Water Research | 2012

Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water

Bulbul Ahmed; Bin Cao; Bhoopesh Mishra; Maxim I. Boyanov; Kenneth M. Kemner; Jim K. Fredrickson; Haluk Beyenal

Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (∼7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (∼93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.


Applied and Environmental Microbiology | 2012

Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments

Bulbul Ahmed; Bin Cao; Jeffrey S. McLean; Tuba Ica; Alice Dohnalkova; Ozlem Istanbullu; Akin Paksoy; Jim K. Fredrickson; Haluk Beyenal

ABSTRACT A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.


Archive | 2010

Immobilization of Uranium in Groundwater Using Biofilms

Bin Cao; Bulbul Ahmed; Haluk Beyenal

Uranium is one of the most common radionuclides in soils, sediments, and groundwater at radionuclides-contaminated sites. At these contaminated sites, uranium leaches into the groundwater, which has become a widespread problem at mining and milling sites across North America, South America, and Eastern Europe. The movement of groundwater usually transports soluble uranium contaminants beyond their original boundaries, causing a global problem in aquifers, water supplies, and related ecosystems and posing a serious threat to human health and the natural environment. In order to meet the EPA standards, extensive efforts have been made to assess and remediate uranium-contaminated sites. As a cost-effective technology with minimal disruption to the environment, bioremediation harnessing indigenous microbial processes for cleanup has been utilized for uranium remediation. In the first part of this chapter, various uranium remediation technologies are discussed. Emphasis is placed on the principles and mechanisms of uranium bioremediation and the key factors affecting it. The second part of this chapter focuses on the use of biofilms for uranium immobilization in groundwater from subsurface environments. Most of the literature studies on uranium bioremediation have been conducted with suspended microorganisms or enriched sediments, which were eventually spiked with micro- or nano-particles of other minerals. However, biofilms are the commonly found microbial growth pattern in natural soils and water-sediment interfaces. With heterogeneous and complex biotic, abiotic and redox conditions significantly different from those in bulk conditions, biofilms pose challenges in predicting the mobility of uranium. Although previous studies have improved our understanding of uranium immobilization processes in biofilms, in order to efficiently and sustainably immobilize uranium at contaminated sites using indigenous biofilms, more knowledge is needed on the complex interactions among uranium, biofilms, and various redox-sensitive minerals during in situ uranium bioremediation.


Frontiers in Environmental Science | 2017

Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

Ryan S. Renslow; Bulbul Ahmed; Jamie R. Nuñez; Bin Cao; Paul D. Majors; Jim K. Fredrickson; Haluk Beyenal

In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U). In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS). The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS) and loosely associated EPS (laEPS), respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material). The input variables of the model were the lactate, fumarate, cell and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR) microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental observation. It has the ability to predict the relative contributions to U immobilization of laEPS, bEPS, and cells.


Sensors and Actuators B-chemical | 2012

A voltammetric flavin microelectrode for use in biofilms

Hung Duc Nguyen; Ryan S. Renslow; Jerome T. Babauta; Bulbul Ahmed; Haluk Beyenal


Archive | 2012

Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp Strain 300A, Isolated from Hanford 30

Bulbul Ahmed; Bin Cao; Jeffrey S. McLean; Tuba Ica; Alice Dohnalkova; Ozlem Istanbullu; Akin Paksoy; James K. Fredrickson; Haluk Beyenal

Collaboration


Dive into the Bulbul Ahmed's collaboration.

Top Co-Authors

Avatar

Haluk Beyenal

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Jim K. Fredrickson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bin Cao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Paul D. Majors

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ozlem Istanbullu

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Tuba Ica

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Bin Cao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Akin Paksoy

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge