Bulent Oktem
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bulent Oktem.
Nature | 2016
Can Kerse; Hamit Kalaycioglu; Parviz Elahi; Barbaros Çetin; Denizhan Koray Kesim; Önder Akçaalan; Seydi Yavas; Mehmet D. Asik; Bulent Oktem; Heinar Hoogland; Ronald Holzwarth; F. Ö. Ilday
The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.
Optics Express | 2011
Kivanç Özgören; Bulent Oktem; Sinem Yilmaz; F. Ömer Ilday; Koray Eken
We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 μm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations.
Optics Letters | 2009
Ibrahim Levent Budunoğlu; Coskun Ulgudur; Bulent Oktem; F. Ö. Ilday
Intensity noise of mode-locked fiber lasers is characterized systematically for all major mode-locking regimes over a wide range of parameters. We find that equally low-noise performance can be obtained in all regimes. Losses in the cavity influence noise strongly without a clear trace in the pulse characteristics. Given that high-energy fiber laser oscillators reported to date have utilized large output coupling ratios, they are likely to have had high noise. Instabilities that occur at high pulse energies are characterized. Noise level is virtually independent of pulse energy below a threshold for the onset of nonlinearly induced instabilities. Continuous-wave peak formation and multiple pulsing influence noise performance moderately. At high energies, a noise outburst is encountered, resulting in up to 2 orders of magnitude increase in noise. These results effectively constitute guidelines for minimization of the laser noise in mode-locked fiber lasers.
Optics Express | 2011
M. Erdoğan; Bulent Oktem; Hamit Kalaycioglu; Seydi Yavas; Mukhopadhyay Pk; Koray Eken; Kivanç Özgören; Y. Aykaç; Uygar H. Tazebay; F. Ö. Ilday
We propose and demonstrate the use of short pulsed fiber lasers in surface texturing using MHz-repetition-rate, microjoule- and sub-microjoule-energy pulses. Texturing of titanium-based (Ti6Al4V) dental implant surfaces is achieved using femtosecond, picosecond and (for comparison) nanosecond pulses with the aim of controlling attachment of human cells onto the surface. Femtosecond and picosecond pulses yield similar results in the creation of micron-scale textures with greatly reduced or no thermal heat effects, whereas nanosecond pulses result in strong thermal effects. Various surface textures are created with excellent uniformity and repeatability on a desired portion of the surface. The effects of the surface texturing on the attachment and proliferation of cells are characterized under cell culture conditions. Our data indicate that picosecond-pulsed laser modification can be utilized effectively in low-cost laser surface engineering of medical implants, where different areas on the surface can be made cell-attachment friendly or hostile through the use of different patterns.
Optics Letters | 2012
Parviz Elahi; S. Yılmaz; Önder Akçaalan; Hamit Kalaycioglu; Bulent Oktem; Cç. Sȩenel; F. Ö. Ilday; K. Eken
Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.
Optics Letters | 2010
Hamit Kalaycioglu; Bulent Oktem; Senel C; Paltani Pp; F. Ö. Ilday
We demonstrate generation of pulses with up to 4 microJ energy at 1 MHz repetition rate through nonlinear chirped-pulse amplification in an entirely fiber-integrated amplifier, seeded by a fiber oscillator. The peak power and the estimated nonlinear phase shift of the amplified pulses are as much as 57 kW and 22pi, respectively. The shortest compressed pulse duration of 140 fs is obtained for 3.1 microJ of uncompressed amplifier output energy at 18pi of nonlinear phase shift. At 4 microJ of energy, the nonlinear phase shift is 22pi and compression leads to 170-fs-long pulses. Numerical simulations are utilized to model the experiments and identify the limitations. Amplification is ultimately limited by the onset of Raman amplification of the longer edge of the spectrum with an uncompressible phase profile.
Advances in Optical Materials (2011), paper AWA15 | 2011
Kivanç Özgören; Bulent Oktem; F. Oemer Ilday; Ece Pasin; Koray Eken
We demonstrate micromachining with 1ns-long pulses from an all-fiber laser. Fiber lasers generating uncompressible long pulses have been ignored as undesired modes, however their robust, low-repetition-rate operation is well suited to micromachining.
Lasers, Sources and Related Photonic Devices (2010), paper AWA4 | 2010
Bulent Oktem; Hamit Kalaycioglu; F. Ö. Ilday
We report a 1-MHz robust, all-fiber amplifier-oscillator system. Amplified pulses of 3.1 uJ are externally compressed to 140 fs. The highest peak power from an integrated fiber source, up to 50 kW, is obtained.
conference on lasers and electro optics | 2008
Bulent Oktem; Coskun Ulgudur; F. Ö. Ilday
We report order-of-magnitude spectral breathing in a dispersion-managed Er-fiber laser with an intracavity bandpass filter. This is to our knowledge the highest of any laser reported. Pulse energy is 1.7 nJ, width is 110 fs.
ursi general assembly and scientific symposium | 2011
F. Ömer Ilday; Bulent Oktem; Coskun Ulgudur
Fiber lasers are attractive with their simplicity, high powers and low cost. However, propagation of short pulses in optical fiber leads to nonlinear effects, which limit the technical performance. These effects drive rich dynamics, which is interesting from a fundamental perspective. The nonlinear waves community has unraveled the fascinating world of solitons and similaritons through experiments in fibers. This paper overviews the recent development of the soliton-similariton laser. The original similariton laser was the first to work with nonlinear effects, rather than minimizing or compensating them. In the soliton-similariton laser, the propagation is strongly nonlinear everywhere.