Bunjerd Jongsomjit
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bunjerd Jongsomjit.
Journal of Natural Gas Chemistry | 2011
Jakrapan Janlamool; Piyasan Praserthdam; Bunjerd Jongsomjit
Abstract In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by: (i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.
Molecules | 2005
Bunjerd Jongsomjit; Sutti Ngamposri; Piyasan Praserthdam
Activities during ethylene/1-hexene copolymerization were found to increase using the mixed titania/silica-supported MAO with rac-Et[Ind]2ZrCl2 metallocene catalyst. Energy Dispersive X-ray spectorcopy (EDX) indicated that the titania was apparently located on the outer surface of silica and acted as a spacer to anchor MAO to the silica surface. IR spectra revealed the Si-O-Ti stretching at 980 cm-1 with low content of titania. The presence of anchored titania resulted in less steric hindrance and less interaction due to supporting effect.
Molecules | 2011
Mingkwan Wannaborworn; Piyasan Praserthdam; Bunjerd Jongsomjit
This research aimed to investigate the copolymerization of ethylene and various 1-olefins. The comonomer lengths were varied from 1-hexene (1-C6) up to 1-octadecene (1-C18) in order to study the effect of comonomer chain length on the activity and properties of the polymer in the metallocene/MAO catalyst system. The results indicated that two distinct cases can be described for the effect of 1-olefin chain length on the activity. Considering the short chain length comonomers, such as 1-hexene, 1-octene and 1-decene, it is obvious that the polymerization activity decreased when the length of comonomer was higher, which is probably due to increased steric hindrance at the catalytic center hindering the insertion of ethylene monomer to the active sites, hence, the polymerization rate decreased. On the contrary, for the longer chain 1-olefins, namely 1-dodecene, 1-tetradecene and 1-octadecene, an increase in the comonomer chain length resulted in better activity due to the opening of the gap aperture between Cp(centroid)-M-Cp-(centroid), which forced the coordination site to open more. This effect facilitated the polymerization of the ethylene monomer at the catalytic sites, and thus, the activity increased. The copolymers obtained were further characterized using thermal analysis, X-ray diffraction spectroscopy and 13C-NMR techniques. It could be seen that the melting temperature and comonomer distribution were not affected by the 1-olefin chain length. The polymer crystallinity decreased slightly with increasing comonomer chain length. Moreover, all the synthesized polymers were typical LLDPE having random comonomer distribution.
Catalysis Letters | 2004
Bunjerd Jongsomjit; Paninee Kaewkrajand; Sieghard E. Wanke; Piyasan Praserthdam
Activities of ethylene/α-olefin copolymerization were found to increase with silane-modified silica-supported MAO using ansa-zirconocene catalyst. The increase in activities was less pronounced when higher α-olefins were used. However, silane modification resulted in the narrower molecular weight distribution of polymers. 13C NMR revealed that ethylene incorporation in all systems gave polymers with the similar triad distribution.
Journal of Nanomaterials | 2013
Pimpatima Panupakorn; Ekrachan Chaichana; Piyasan Praserthdam; Bunjerd Jongsomjit
Two commercial nanoclays were used here as catalytic fillers for production of polyethylene (PE) and linear low-density polyethylene (LLDPE) nanocomposites via in situ polymerization with zirconocene/MAO catalyst. It was found that both types of nanoclays designated as clay A and clay B can improve thermal stability to the host polymers as observed froma thermal gravimetric analysis (TGA). The distribution of the clays inside the polymer matrices appeared good due to the in situ polymerization system into which the clays were introduced during the polymer forming reaction. Upon investigating the clays by X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR), it was observed that the crucial differences between the two clays are the crystallite sizes (A < B) and the amounts of amine group (A < B). The higher amount of amine group in clay B was supposed to be a major reason for the lower catalytic activity of the polymerization systems compared to clay A resulting from its deactivating effect on zirconocene catalyst. However, for both clays, increasing their contents in the polymerization systems reduced the catalytic activity due to the higher steric hindrance occurring.
Journal of Nanomaterials | 2015
Mingkwan Wannaborworn; Piyasan Praserthdam; Bunjerd Jongsomjit
The ethanol dehydration to ethylene over alumina catalysts prepared by solvothermal and sol-gel methods was investigated. Also, a commercial alumina was used for comparison purposes. The results showed that the catalytic activity depends on the properties of catalyst derived from different preparation methods and reaction temperature. The alumina synthesized by solvothermal method exhibited the highest activity. This can be attributed to the higher surface area and larger amount of acid site, especially the ratio of weak/strong acid strength as determined by N2 physisorption and NH3-TPD studies. The solvothermal-derived catalyst exhibited an excellent performance with complete ethanol conversion and 100% selectivity to ethylene at 350°C in comparison with other ones. In addition, we further studied the catalytic dehydration of alumina catalyst modified with Fe. The presence of 10 wt.% Fe decreased both conversion and ethylene selectivity. However, the acetaldehyde selectivity apparently increased. It was related to the dehydrogenation pathway that takes place on Fe species.
Journal of Nanomaterials | 2017
Tharmmanoon Inmanee; Piriya Pinthong; Bunjerd Jongsomjit
The mixed gamma and chi crystalline phase alumina (M-Al) catalysts prepared by the solvothermal method were investigated for catalytic ethanol dehydration. The effects of calcination temperatures and Mo modification were elucidated. The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), and NH3-temperature programmed desorption (NH3-TPD). The catalytic activity was tested for ethylene production by dehydration reaction of ethanol in gas phase at atmospheric pressure and temperature between 200°C and 400°C. It was found that the calcination temperatures and Mo modification have effects on acidity of the catalysts. The increase in calcination temperature resulted in decreased acidity, while the Mo modification on the mixed phase alumina catalyst yielded increased acidity, especially in medium to strong acids. In this study, the catalytic activity of ethanol dehydration to ethylene apparently depends on the medium to strong acid. The mixed phase alumina catalyst calcined at 600°C (M-Al-600) exhibits the complete ethanol conversion having ethylene yield of 98.8% (at 350°C) and the Mo-modified catalysts promoted dehydrogenation reaction to acetaldehyde. This can be attributed to the enhancement of medium to strong acid with metal sites of catalyst.
Molecules | 2010
Nichapat Senso; Supaporn Khaubunsongserm; Bunjerd Jongsomjit; Piyasan Praserthdam
This article reveals the effects of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization over MgCl2/SiO2-supported Ziegler-Natta (ZN) catalysts. First, the conventional ZN catalyst was prepared with SiO2 addition. Then, the catalyst was tested for ethylene polymerization and ethylene/1-hexene (E/H) co-polymerization using different activators. Triethylaluminum (TEA), tri-n-hexyl aluminum (TnHA) and diethyl aluminum chloride (DEAC), TEA+DEAC, TEA+TnHA, TnHA+ DEAC, TEA+DEAC+TnHA mixtures, were used as activators in this study. It was found that in the case of ethylene polymerization with a sole activator, TnHA exhibited the highest activity among other activators due to increased size of the alkyl group. Further investigation was focused on the use of mixed activators. The activity can be enhanced by a factor of three when the mixed activators were employed and the activity of ethylene polymerization apparently increased in the order of TEA+ DEAC+TnHA > TEA+DEAC > TEA+TnHA. Both the copolymerization activity and crystallinity of the synthesized copolymers were strongly changed when the activators were changed from TEA to TEA+DEAC+TnHA mixtures or pure TnHA and pure DEAC. As for ethylene/1-hexene copolymerization the activity apparently increased in the order of TEA+DEAC+TnHA > TEA+TnHA > TEA+DEAC > TnHA+DEAC > TEA > TnHA > DEAC. Considering the properties of the copolymer obtained with the mixed TEA+DEAC+TnHA, its crystallinity decreased due to the presence of TnHA in the mixed activator. The activators thus exerted a strong influence on copolymer structure. An increased molecular weight distribution (MWD) was observed, without significant change in polymer morphology.
Molecules | 2014
Jakrapan Janlamool; Dima L. Bashlakov; Otto Berg; Piyasan Praserthdam; Bunjerd Jongsomjit; Ludo B. F. Juurlink
We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.
Chinese Journal of Polymer Science | 2014
Wanna Phiwkliang; Bunjerd Jongsomjit; Piyasan Praserthdam
The copolymerizations of ethylene with 1-hexene or 1-octene by using TiCl4/MgCl2/THF catalysts modified with different metal halide additives (ZnCl2, SiCl4, and the combined ZnCl2-SiCl4) were investigated based on catalytic activity and copolymer properties. It was found that the catalyst modified with mixed ZnCl2-SiCl4 revealed the highest activities for both ethylene/1-hexene and ethylene/1-octene copolymerization. The increase in activities was due to the formation of acidic sites by modifying the catalysts with Lewis acids. Based on the FTIR measurements, the characteristic C-O-C peaks of the catalysts modified with metal halide additives were slightly shifted to lower wavenumber when compared to the unmodified catalyst. This showed that the modified catalysts could generate more acid sites in the TiCl4/MgCl2/THF catalytic system leading to an increase in activities as well as comonomer insertion (as proven by 13C-NMR). However, Lewis acidmodifications did not affect the microstructure of the copolymers obtained. By comparison on the properties of copolymers prepared with the unmodified catalyst, it was found that polymers with ZnCl2 and/or SiCl4 modification exhibited a slight decrease in melting temperature, crystallinity and density. It is suggested that these results were obtained based on the different amount of α-olefins insertion, regardless of the types of Lewis acids and comonomer.