Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bunta Watanabe is active.

Publication


Featured researches published by Bunta Watanabe.


The Plant Cell | 2006

C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis

Toshiyuki Ohnishi; Anna Mária Szatmári; Bunta Watanabe; Satomi Fujita; Simona Bancos; Csaba Koncz; Marcel Lafos; Kyomi Shibata; Takao Yokota; Kanzo Sakata; Miklos Szekeres; Masaharu Mizutani

Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)–catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5α-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5α-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.


The Plant Cell | 2006

Cytochrome P450 CYP710A Encodes the Sterol C-22 Desaturase in Arabidopsis and Tomato

Tomomi Morikawa; Masaharu Mizutani; Nozomu Aoki; Bunta Watanabe; Hirohisa Saga; Shigeki Saito; Akira Oikawa; Hideyuki Suzuki; Nozomu Sakurai; Daisuke Shibata; Akira Wadano; Kanzo Sakata; Daisaku Ohta

Δ22-Unsaturated sterols, containing a double bond at the C-22 position in the side chain, occur specifically in fungi and plants. Here, we describe the identification and characterization of cytochrome P450s belonging to the CYP710A family as the plant C-22 desaturase. Recombinant proteins of CYP710A1 and CYP710A2 from Arabidopsis thaliana and CYP710A11 from tomato (Lycopersicon esculentum) were expressed using a baculovirus/insect system. The Arabidopsis CYP710A1 and tomato CYP710A11 proteins exhibited C-22 desaturase activity with β-sitosterol to produce stigmasterol (CYP710A1, Km = 1.0 μM and kinetic constant [kcat] = 0.53 min−1; CYP710A11, Km = 3.7 μM and kcat = 10 min−1). In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6- to 32-fold. Arabidopsis CYP710A2 was able to produce brassicasterol and stigmasterol from 24-epi-campesterol and β-sitosterol, respectively. Sterol profiling analyses for CYP710A2 overexpression and a T-DNA insertion event into CYP710A2 clearly demonstrated in planta that CYP710A2 was responsible for both brassicasterol and stigmasterol production. Semiquantitative PCR analyses and promoter:β-glucuronidase transgenic approaches indicated strict tissue/organ-specific regulation for each CYP710A gene, implicating differential tissue distributions of the Δ22-unsaturated sterols in Arabidopsis. Our results support the possibility that the CYP710 family may encode P450s of sterol C-22 desaturases in different organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog.

Atsushi Kodan; Tomohiro Yamaguchi; Toru Nakatsu; Keita Sakiyama; Christopher J. Hipolito; Akane Fujioka; Ryo Hirokane; Keiji Ikeguchi; Bunta Watanabe; Jun Hiratake; Yasuhisa Kimura; Hiroaki Suga; Kazumitsu Ueda; Hiroaki Kato

Significance P-glycoprotein exports various hydrophobic chemicals in an ATP-dependent manner, determines their absorption and distribution in the body, and is involved in multidrug resistance (MDR) in tumors. Understanding the mechanism of the multidrug transport is important for designing drugs of good bioavailability and efficient cancer chemotherapy. We determined the high-resolution crystal structures of a eukaryotic P-glycoprotein homolog and revealed the detailed architecture of its transmembrane domains, which contain an exit gate for substrates that opens to the extracellular side and two entrance gates that open to the intramembranous region and the cytosolic side. We propose a motion of the transmembrane domains powered by the association of two nucleotide-binding domains on ATP binding that is different from other transporters. P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Å resolution and bound to a unique allosteric inhibitor at 2.4-Å resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5.


Journal of Biological Chemistry | 2012

CYP90A1/CPD, a Brassinosteroid Biosynthetic Cytochrome P450 of Arabidopsis, Catalyzes C-3 Oxidation

Toshiyuki Ohnishi; Blanka Godza; Bunta Watanabe; Shozo Fujioka; Lidia Hategan; Kouhei Ide; Kiyomi Shibata; Takao Yokota; Miklos Szekeres; Masaharu Mizutani

Background: Recent results raised doubts regarding the earlier proposed C-23 hydroxylase function of CYP90A1/CPD in brassinosteroid biosynthesis. Results: The enzymatic role of CYP90A1/CPD is determined by analytical, genetic, and direct biochemical approaches. Conclusion: CYP90A1 catalyzes C-3 oxidation of early brassinosteroid intermediates. Significance: Our results highlight the primary role of the campestanol-independent pathway in brassinosteroid biosynthesis. Brassinosteroids (BRs) are steroidal phytohormones that regulate plant growth and development. Whereas in Arabidopsis the network-like routes of BR biosynthesis have been elucidated in considerable detail, the roles of some of the biosynthetic enzymes and their participation in the different subpathways remained to be clarified. We investigated the function of the cytochrome P450 monooxygenase CYP90A1/CPD, which earlier had been proposed to act as a BR C-23 hydroxylase. Our GC-MS and genetic analyses demonstrated that the cpd mutation arrests BR synthesis upstream of the DET2-mediated 5α reduction step and that overexpression of the C-23 hydroxylase CYP90C1 does not alleviate BR deficiency in the cpd mutant. In line with these results, we found that CYP90A1/CPD heterologously expressed in a baculovirus-insect cell system catalyzes C-3 oxidation of the early BR intermediates (22S)-22-hydroxycampesterol and (22R,23R)-22,23-dihydroxycampesterol, as well as of 6-deoxocathasterone and 6-deoxoteasterone. Enzyme kinetic data of CYP90A1/CPD and DET2, together with those of the earlier studied CYP90B1, CYP90C1, and CYP90D1, suggest that BR biosynthesis proceeds mainly via the campestanol-independent pathway.


PLOS ONE | 2014

RPEL Proteins Are the Molecular Targets for CCG-1423, an Inhibitor of Rho Signaling

Ken’ichiro Hayashi; Bunta Watanabe; Yoshiaki Nakagawa; Saki Minami; Tsuyoshi Morita

Epithelial–msenchymal transition (EMT) is closely associated with cancer and tissue fibrosis. The nuclear accumulation of myocardin-related transcription factor A (MRTF-A/MAL/MKL1) plays a vital role in EMT. In various cells treated with CCG-1423, a novel inhibitor of Rho signaling, the nuclear accumulation of MRTF-A is inhibited. However, the molecular target of this inhibitor has not yet been identified. In this study, we investigated the mechanism of this effect of CCG-1423. The interaction between MRTF-A and importin α/β1 was inhibited by CCG-1423, but monomeric G-actin binding to MRTF-A was not inhibited. We coupled Sepharose with CCG-1423 (CCG-1423 Sepharose) to investigate this mechanism. A pull-down assay using CCG-1423 Sepharose revealed the direct binding of CCG-1423 to MRTF-A. Furthermore, we found that the N-terminal basic domain (NB) of MRTF-A, which acts as a functional nuclear localization signal (NLS) of MRTF-A, was the binding site for CCG-1423. G-actin did not bind to CCG-1423 Sepharose, but the interaction between MRTF-A and CCG-1423 Sepharose was reduced in the presence of G-actin. We attribute this result to the high binding affinity of MRTF-A for G-actin and the proximity of NB to G-actin-binding sites (RPEL motifs). Therefore, when MRTF-A forms a complex with G-actin, the binding of CCG-1423 to NB is expected to be blocked. NF-E2 related factor 2, which contains three distinct basic amino acid-rich NLSs, did not bind to CCG-1423 Sepharose, but other RPEL-containing proteins such as MRTF-B, myocardin, and Phactr1 bound to CCG-1423 Sepharose. These results suggest that the specific binding of CCG-1423 to the NLSs of RPEL-containing proteins. Our proposal to explain the inhibitory action of CCG-1423 is as follows: When the G-actin pool is depleted, CCG-1423 binds specifically to the NLS of MRTF-A/B and prevents the interaction between MRTF-A/B and importin α/β1, resulting in inhibition of the nuclear import of MRTF-A/B.


Steroids | 2004

Stereoselective synthesis of (22R)- and (22S)-castasterone/ponasterone A hybrid compounds and evaluation of their molting hormone activity.

Bunta Watanabe; Yoshiaki Nakagawa; Takehiko Ogura; Hisashi Miyagawa

Two stereoisomers of a castasterone/ponasterone A hybrid compound, the (20R,22R) and (20R,22S)-isomers of 2alpha,3alpha,20,22-tetrahydroxy-5alpha-cholestan-6-one, were synthesized stereoselectively and their binding activity to the ecdysteroid receptor was determined. From the concentration-response curve for the inhibition of the incorporation of tritiated ponasterone A into ecdysteroid receptor containing insect cells, the concentration (IC50) required to inhibit 50% of the incorporation of radioactivity into cells was evaluated. The IC50 values of the (22R)- and (22S)-isomers were determined to be 0.30 and 38.9 microM against Kc cells, respectively, indicating that the (22R)-isomer is about 100 times more potent than the corresponding (22S)-isomer. IC50 values of these compounds against lepidopteran Sf-9 cells were determined to be 0.36 and 12.9 microM, respectively. The molting hormonal effect was examined in a Chilo suppressalis integument system and the 50% effective concentration for the stimulation of N-acetylglucosamine incorporation into the cultured integument was determined to be 2.7 microM for the (22R)-isomer, while the (22S)-isomer was inactive. On the other hand, both isomers did not show brassinolide-like activity in the rice lamina inclination assay.


Journal of Pharmacology and Experimental Therapeutics | 2011

Preventive effect of GGsTop, a novel and selective γ-glutamyl transpeptidase inhibitor, on ischemia/reperfusion-induced renal injury in rats.

Shinya Yamamoto; Bunta Watanabe; Jun Hiratake; Ryosuke Tanaka; Mamoru Ohkita; Yasuo Matsumura

GGsTop [2-amino-4-{[3-(carboxymethyl)phenyl](methyl)phosphono}butanoic acid], is a novel, highly selective, and irreversible γ-glutamyl transpeptidase (GGT) inhibitor with no inhibitory activity on glutamine amidotransferases. In this study, we investigated the effects of treatment with GGsTop on ischemia/reperfusion-induced renal injury in uninephrectomized rats. Ischemic acute kidney injury (AKI) was induced by occlusion of the left renal artery and vein for 45 min followed by reperfusion 2 weeks after contralateral nephrectomy. Renal function in vehicle-treated AKI rats markedly decreased at 1 day after reperfusion. Treatment with GGsTop (1 and 10 mg/kg i.v.) 5 min before ischemia attenuated the ischemia/reperfusion-induced renal dysfunction in a dose-dependent manner. Histopathological examination of the kidney of AKI rats revealed severe renal damage, which was significantly suppressed by the GGsTop treatment. In renal tissues exposed to ischemia/reperfusion, GGT activity was markedly increased immediately after reperfusion, whereas renal superoxide production and malondialdehyde level were significantly increased 6 h after reperfusion. These alterations were abolished by the treatment with GGsTop. In addition, renal glutathione content was decreased by the 45-min ischemia, but its level was markedly elevated by the GGsTop treatment. Our results demonstrate that the novel and highly selective GGT inhibitor GGsTop prevents ischemia/reperfusion-induced AKI. The renoprotective effect of GGsTop seems to be attributed to the suppression of oxidative stress by inhibiting GGT activation, thereby preventing the degradation of glutathione.


Bioscience, Biotechnology, and Biochemistry | 2006

CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato

Toshiyuki Ohnishi; Bunta Watanabe; Kanzo Sakata; Masaharu Mizutani

We characterized a new cytochrome P450 monooxygenase (P450), CYP724B2, from tomato (Lycopersicon esculentum). CYP724B2 showed 42% and 62% amino acid sequence identity with Arabidopsis DWARF4/CYP90B1 and rice DWARF11/CYP724B1 respectively. Functional assay of CYP724B2 heterologously expressed in insect cells revealed that CYP724B2 catalyzes C-22 hydroxylation of campesterol, indicating that CYP724B2 is a C-22 hydroxylase. We also isolated a tomato CYP90B homolog (CYP90B3) and found that CYP90B3 is a C-22 hydroxylase as well. CYP724B2 and CYP90B3 showed substrate specificities similar to each other toward the biosynthetic intermediate compounds from campesterol to campestanol. Campesterol was the best substrate, and (24R)-ergost-4-en-3-one was also metabolized to the C-22 hydroxylated product to some extent. On the other hand, the P450s catalyzed C-22 hydroxylation of (24R)-5α-ergostan-3-one and campestanol at a trace level, indicating that the compounds after C-5α reduction are poor substrates of CYP724B2 and CYP90B3. In addition, cholesterol (C27 sterol) and sitosterol (C29 sterol) were also converted to C-22 hydroxylated products by the P450s. Furthermore, CYP724B2 and CYP90B3 genes were ubiquitously expressed, and their transcript levels were down-regulated by the exogenous application of brassinolide. These findings strongly suggest that CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato.


Bioorganic & Medicinal Chemistry | 2012

A sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant leukemia cells

Hideyuki Ikeuchi; Yong-Mo Ahn; Takuya Otokawa; Bunta Watanabe; Lamees Hegazy; Jun Hiratake; Nigel G. J. Richards

An adenylated sulfoximine transition-state analogue 1, which inhibits human asparagine synthetase (hASNS) with nanomolar potency, has been reported to suppress the proliferation of an l-asparagine amidohydrolase (ASNase)-resistant MOLT-4 leukemia cell line (MOLT-4R) when l-asparagine is depleted in the medium. We now report the synthesis and biological activity of two new sulfoximine analogues of 1 that have been studied as part of systematic efforts to identify compounds with improved cell permeability and/or metabolic stability. One of these new analogues, an amino sulfoximine 5 having no net charge at cellular pH, is a better hASNS inhibitor (K(I)(∗)=8 nM) than 1 and suppresses proliferation of MOLT-4R cells at 10-fold lower concentration (IC(50)=0.1mM). More importantly, and in contrast to the lead compound 1, the presence of sulfoximine 5 at concentrations above 0.25 mM causes the death of MOLT-4R cells even when ASNase is absent in the culture medium. The amino sulfoximine 5 exhibits different dose-response behavior when incubated with an ASNase-sensitive MOLT-4 cell line (MOLT-4S), supporting the hypothesis that sulfoximine 5 exerts its effect by inhibiting hASNS in the cell. Our work provides further evidence for the idea that hASNS represents a chemotherapeutic target for the treatment of leukemia, and perhaps other cancers, including those of the prostate.


Steroids | 2008

Synthesis of ponasterone A derivatives with various steroid skeleton moieties and evaluation of their binding to the ecdysone receptor of Kc cells

Hirokazu Arai; Bunta Watanabe; Yoshiaki Nakagawa; Hisashi Miyagawa

A series of ponasterone A (PNA) derivatives with various steroid moieties were synthesized to measure their binding activity to the ecdysone receptors of Drosophila Kc cells. The activity of compounds was evaluated by determining the concentration required to give the 50% inhibition (IC(50) in M) of the incorporation of [(3)H]PNA to Drosophila Kc cells. Compounds with no functional groups such as OH and CO group in the steroid skeleton moiety were inactive. By the introduction of functional groups such as the OH and the CO group in the steroidal structure, these compounds became active. Some compounds containing the A/B-trans ring fusion, which is different from that (A/B-cis) of ecdysteroids were also active. The oxidation of CH(2) at 6-position to CO, enhanced the activity 19 times, but the activity was erased by the reduction of oxo to OH group at 6-position. The activity was enhanced about 250 times by the conversion of A/B ring configuration from trans [(20R,22R)-2beta,3beta,20,22-tetrahydroxy-5alpha-cholestan-6-one: pIC(50)=4.84] to cis [(20R,22R)-2beta,3beta,20,22-tetrahydroxy-5beta-cholestan-6-one: pIC(50)=7.23]. The latter cis-type compound which is the most potent among compounds synthesized in this study was equipotent to the natural molting hormone, 20-hydroxyecdysone, even though it is 1/50 of PNA.

Collaboration


Dive into the Bunta Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyuki Suzuki

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Yokota

Joetsu University of Education

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge