Bünyamin Akgül
İzmir Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bünyamin Akgül.
Methods in Enzymology | 2005
Chen-Pei D. Tu; Bünyamin Akgül
The Drosophila glutathione S-transferases (GSTs; EC2.5.1.18) comprise a host of cytosolic proteins that are encoded by a gene superfamily and a homolog of the human microsomal GST. Biochemical studies of certain recombinant GSTs have linked their enzymatic functions to important substrates such as the pesticide DDT and 4-hydroxynonenal, a reactive lipid metabolite. Moreover, a correspondence has been observed between resistance to insecticide substrates-such as DDT-and elevated enzyme levels in resistant strains. Such significant, recurring connections suggest that these gst genes may feature in a model for the development of insecticide resistance. We have amassed substantial biochemical support for relating the overexpression of a particular gst gene to insecticide resistance but are still short of solid genetic evidence to affirm a causal relationship. With the Drosophila system, we have at our disposal genetic and molecular techniques such as p-element mutagenesis and excision, siRNA technology, and versatile transgenic techniques. We can use these methods to effect loss-of-function and gain-of-function conditions and, in these rendered contexts, study other potentially important functions of the gst gene superfamily. An immediate problem that comes to mind is the possible causal relationship between GST substrate specificity and chemical resistance phenotype(s). In this chapter, we present an analysis of selected strategies and laboratory methods that may be useful in pursuing a variety of interesting problems. We will cover three kinds of approaches-biochemistry, genetics, and genomics-as important instruments in a toolkit for studies of the Drosophila gst superfamily. We make the case that these approaches (biochemistry, genetics, and genomics) have helped us gain important insights and can continue to help the community gain a more complete understanding of the biological functions of GSTs. Such knowledge may be key in addressing questions about the detoxification of pesticides and how oxidative stresses affect life span. We hope that these techniques will prove fruitful in studying a host of other physiologic functions as well.
PLOS ONE | 2012
Tahsin Saygılı; Semih Can Akıncılar; Bünyamin Akgül; Ayten Nalbant
One of the heat shock family protein (Hsp) expressing bacteria is the gram negative, periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). A. actinomycetemcomitans’ Hsp is a 64-kDa GroEL-protein, which has been shown to influence the host cells. In this study we used recombinant A. actinomycetemcomitans GroEL (rAaGroEL) protein as a model antigen to study GroEL-mediated T cell immune response. Human peripheral mononuclear cells (PBMCs), when stimulated with recombinant rAaGroEL, expressed early activation marker CD69 and IL-2R (CD25). CD25 and CD69 expressions were higher in CD4+ T cells compared to CD8+ T cells. rAaGroEL-responding CD4+ T cells expressed IL-10, IFNγ and TNFα cytokines. Interestingly, there were also IL-10 and IFNγ double cytokine producing CD4+ T cells. Additionally, IFNγ expressing CD4+ T cells were also T-bet positive. Altogether the results suggest that rAaGroEL protein affects CD4+ T cells to differentiate into IFNγ IL10-secreting T-bet+ Th1 cells.
PLOS ONE | 2010
Bünyamin Akgül; Kai-Wei Lin; Hui-Mei Ou Yang; Yen-Hui Chen; Tzu-Huan Lu; Chien-Hsiun Chen; Tateki Kikuchi; Yuan-Tsong Chen; Chen-Pei D. Tu
Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlics chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herbs broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlics other physiological effects.
Journal of Biological Chemistry | 2002
Bünyamin Akgül; Chen-Pei D. Tu
The neighboring genes gstD1 andgstD21 share 70% sequence identity. gstD1 encodes a 1,1,1-trichloro-2,2-bis-(P-chlorophenyl)ethane dehydrochlorinase; gstD21, a ligandin. Both of their mRNAs are inducible by pentobarbital but otherwise behave very differently. Intact gstD21 mRNA is intrinsically labile, but becomes stabilized when separated from its native untranslated region (UTR). In contrast, whereasgstD1 mRNA is very stable in its entirety, without its native UTRs it becomes even more labile than that ofgstD21. Decay patterns from four chimeric D1-D21 mRNAs, designed to reveal the individual importance of each molecular region to stability, strongly indicate the presence of destabilizing elements in the coding region of gstD1 mRNA. Thus, the UTRs of this molecule must contain a dominant stabilizer element that overrides the destabilizing influence of the coding region and confers overall stability to the entire molecule. The suspected presence of such a stabilizer element in gstD1 mRNA extends a concept from mRNA metabolism in yeast and cultured mammalian cells to include a multicellular organism, Drosophila melanogaster. The complementary presence of destabilizing and stabilizer elements on the same mRNA reveals a regulatory mechanism by which an abundant mRNA can be further induced by a chemical stimulus, or otherwise be returned to normal levels during recovery.
Genes | 2017
Çağdaş Göktaş; Hatice Yiğit; Mehmet İlyas Coşacak; Bünyamin Akgül
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing reads from unfractionated and fractionated Drosophila embryos has revealed that tRFs, which are detected mainly from the 5’ends of tRNAs, co-sediment with the non-polysomal fractions. Interestingly, the expression levels of a subset of tRFs change temporally following the maternal-to-zygotic transition in embryos. We detected non-polysomal association of tRFs in S2 cells as well. Differential tRF expression pattern points to developmental significance at the organismal level. These results suggest that tRFs are associated primarily with the non-polysomal complexes in Drosophila embryos and S2 cells.
Methods of Molecular Biology | 2014
Syed Muhammad Hamid; Bünyamin Akgül
MicroRNAs (miRNAs) are small noncoding RNAs of 17-25 nt in length that control gene expression posttranscriptionally. As master regulators of posttranscriptional gene expression, miRNAs themselves are subject to tight regulation at multiple steps. The most common mechanisms include miRNA transcription, processing, and localization. Additionally, intricate feedback loops between miRNAs and transcription factors result in unidirectional, reciprocal, or self-directed elegant control mechanisms. In this chapter, we focus on the posttranscriptional regulatory mechanisms that generate miRNAs whose sequence might be slightly different from the miRNA-coding sequences. Hopefully, this information will be helpful in the discovery of novel miRNAs as well as in the analysis of deep-sequencing data and ab initio prediction of miRNAs.
Turkish Journal of Biology | 2018
Ipek Erdoğan; Mehmet Ilyas Coşacak; Ayten Nalbant Aldanmaz; Bünyamin Akgül
MicroRNAs (miRNAs) are small noncoding RNAs of about 19-25 nt that regulate gene expression posttranscriptionally under various cellular conditions, including apoptosis. The miRNAs involved in modulation of apoptotic events in T cells are partially known. However, heterogeneity associated with cell lines makes it difficult to interpret gene expression signatures, especially in cancer-related cell lines. Treatment of the Jurkat T-cell leukemia cell line with the universal apoptotic drug, camptothecin, resulted in identification of two Jurkat subpopulations: one that is sensitive to camptothecin and another that is rather intrinsically resistant. We sorted apoptotic Jurkat cells from nonapoptotic ones prior to profiling miRNAs through deep sequencing. Our data showed that a total of 184 miRNAs were dysregulated. Interestingly, the apoptotic and nonapoptotic subpopulations exhibited distinct miRNA expression profiles. In particular, 6 miRNAs were inversely expressed in these two subpopulations. The pyrosequencing results were validated by real-time qPCR. Altogether, these results suggest that miRNAs modulate apoptotic events in T cells and that cellular heterogeneity requires careful interpretation of miRNA expression profiles obtained from drug-treated cell lines.
Genes | 2018
Mehmet İlyas Coşacak; Hatice Yiğit; Caghan Kizil; Bünyamin Akgül
Small ribonucleic acids (RNAs) are known to regulate gene expression during early development. However, the dynamics of interaction between small RNAs and polysomes during this process is largely unknown. To investigate this phenomenon, 0–1 h and 7–8 h Drosophila melanogaster embryos were fractionated on sucrose density gradients into four fractions based on A254 reading (1) translationally inactive messenger ribonucleoprotein (mRNP), (2) 60S, (3) monosome, and (4) polysome. Comparative analysis of deep-sequencing reads from fractionated and un-fractionated 0–1 h and 7–8 h embryos revealed development-specific co-sedimentation pattern of small RNAs with the cellular translation machinery. Although most micro RNAs (miRNAs) did not have a specific preference for any state of the translational machinery, we detected fraction-specific enrichment of a few miRNAs such as dme-miR-1-3p, -184-3p, 5-5p and 263-5p. More interestingly, we observed changes in the subcellular location of a subset of miRNAs in fractionated embryos despite no measurable difference in their amount in unfractionated embryos. Transposon-derived endo small interfering RNAs (siRNAs) were over-expressed in 7–8 h embryos and associated mainly with the mRNP fraction. In contrast, transposon-derived PIWI-interacting RNAs (piRNA), which were more abundant in 0–1 h embryos, co-sedimented primarily with the polysome fractions. These results suggest that there appears to be a complex interplay among the small RNAs with respect to their polysome-cosedimentation pattern during early development in Drosophila melanogaster.
Frontiers in Genetics | 2018
Bünyamin Akgül; İpek Erdoğan
MicroRNAs (miRNAs) are a conserved class of non-coding RNAs of 22 nucleotides that post-transcriptionally regulate gene expression through translational repression and/or mRNA degradation. A great progress has been made regarding miRNA biogenesis and miRNA-mediated gene regulation. Additionally, an ample amount of information exists with respect to the regulation of miRNAs. However, the cytoplasmic localization of miRNAs and its effect on gene regulatory output is still in progress. We provide a current review of the cytoplasmic miRNA localization in metazoans. We then discuss the dynamic changes in the intracytoplasmic localization of miRNAs as a means to regulate their silencing activity. We then conclude our discussion with the potential molecules that could modulate miRNA localization.
Data in Brief | 2018
Mehmet İlyas Coşacak; İpek Erdoğan; Ayten Nalbant; Bünyamin Akgül
In this article, we report a small RNA data set obtained from human T cell acute leukemia Jurkat cells, which were treated with the universal apoptotic agent camptothecin. Based on the Annexin-V labeling pattern, we sorted two Jurkat subpopulations in treated cells: one that is sensitive to the drug and the other being relatively more resistant. We report new original data that include the frequency of tRNA-derived fragments (tRF) in drug-sensitive and resistant cells. We also present partially analyzed data to show the origin of reads on tRNAs as well as the borders of the fragments. We believe that this data can benefit the science community working in the field of tRF and/or apoptosis.