Bunyen Teng
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bunyen Teng.
Handbook of experimental pharmacology | 2009
S. Jamal Mustafa; R. Ray Morrison; Bunyen Teng; Amir Pelleg
Adenosine is an autacoid that plays a critical role in regulating cardiac function, including heart rate, contractility, and coronary flow. In this chapter, current knowledge of the functions and mechanisms of action of coronary flow regulation and electrophysiology will be discussed. Currently, there are four known adenosine receptor (AR) subtypes, namely A(1), A(2A), A(2B), and A(3). All four subtypes are known to regulate coronary flow. In general, A(2A)AR is the predominant receptor subtype responsible for coronary blood flow regulation, which dilates coronary arteries in both an endothelial-dependent and -independent manner. The roles of other ARs and their mechanisms of action will also be discussed. The increasing popularity of gene-modified models with targeted deletion or overexpression of a single AR subtype has helped to elucidate the roles of each receptor subtype. Combining pharmacologic tools with targeted gene deletion of individual AR subtypes has proven invaluable for discriminating the vascular effects unique to the activation of each AR subtype. Adenosine exerts its cardiac electrophysiologic effects mainly through the activation of A(1)AR. This receptor mediates direct as well as indirect effects of adenosine (i.e., anti-beta-adrenergic effects). In supraventricular tissues (atrial myocytes, sinuatrial node and atriovetricular node), adenosine exerts both direct and indirect effects, while it exerts only indirect effects in the ventricle. Adenosine exerts a negative chronotropic effect by suppressing the automaticity of cardiac pacemakers, and a negative dromotropic effect through inhibition of AV-nodal conduction. These effects of adenosine constitute the rationale for its use as a diagnostic and therapeutic agent. In recent years, efforts have been made to develop A(1)R-selective agonists as drug candidates that do not induce vasodilation, which is considered an undesirable effect in the clinical setting.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Habib R. Ansari; Bunyen Teng; Ahmed Nadeem; Kevin Roush; Karen H. Martin; Jurgen Schnermann; S. Jamal Mustafa
The A(1) adenosine receptor (A(1)AR) is coupled to G(i)/G(o) proteins, but the downstream signaling pathways in smooth muscle cells are unclear. This study was performed in coronary artery smooth muscle cells (CASMCs) isolated from the mouse heart [A(1)AR wild type (A(1)WT) and A(1)AR knockout (A(1)KO)] to delineate A(1)AR signaling through the PKC pathway. In A(1)WT cells, treatment with (2S)-N(6)-(2-endo-norbornyl)adenosine (ENBA; 10(-5)M) increased A(1)AR expression by 150%, which was inhibited significantly by the A(1)AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (10(-6)M), but not in A(1)KO CASMCs. PKC isoforms were identified by Western blot analysis in the cytosolic and membrane fractions of cell homogenates of CASMCs. In A(1)WT and A(1)KO cells, significant levels of basal PKC-alpha were detected in the cytosolic fraction. Treatment with the A(1)AR agonist ENBA (10(-5)M) translocated PKC-alpha from the cytosolic to membrane fraction significantly in A(1)WT but not A(1)KO cells. Phospholipase C isoforms (betaI, betaIII, and gamma(1)) were analyzed using specific antibodies where ENBA treatment led to the increased expression of PLC-betaIII in A(1)WT CASMCs while having no effect in A(1)KO CASMCs. In A(1)WT cells, ENBA increased PKC-alpha expression and p42/p44 MAPK (ERK1/2) phospohorylation by 135% and 145%, respectively. These effects of ENBA were blocked by Gö-6976 (PKC-alpha inhibitor) and PD-98059 (p42/p44 MAPK inhibitor). We conclude that A(1)AR stimulation by ENBA activates the PKC-alpha signaling pathway, leading to p42/p44 MAPK phosphorylation in CASMCs.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Lori S. Kang; Bei Chen; Rafael A. Reyes; Amanda J. LeBlanc; Bunyen Teng; S. Jamal Mustafa; Judy M. Muller-Delp
Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Maryam Sharifi-Sanjani; Xueping Zhou; Shinichi Asano; Stephen S.L. Tilley; Catherine Ledent; Bunyen Teng; Gregory M. Dick; Jamal S.J. Mustafa
Myocardial metabolites such as adenosine mediate reactive hyperemia, in part, by activating ATP-dependent K(+) (K(ATP)) channels in coronary smooth muscle. In this study, we investigated the role of adenosine A(2A) and A(2B) receptors and their signaling mechanisms in reactive hyperemia. We hypothesized that coronary reactive hyperemia involves A(2A) receptors, hydrogen peroxide (H(2)O(2)), and KATP channels. We used A(2A) and A(2B) knockout (KO) and A(2A/2B) double KO (DKO) mouse hearts for Langendorff experiments. Flow debt for a 15-s occlusion was repaid 128 ± 8% in hearts from wild-type (WT) mice; this was reduced in hearts from A(2A) KO and A(2A)/(2B) DKO mice (98 ± 9 and 105 ± 6%; P < 0.05), but not A(2B) KO mice (123 ± 13%). Patch-clamp experiments demonstrated that adenosine activated glibenclamide-sensitive KATP current in smooth muscle cells from WT and A(2B) KO mice (90 ± 23% of WT) but not A(2A) KO or A(2A)/A(2B) DKO mice (30 ± 4 and 35 ± 8% of WT; P < 0.05). Additionally, H(2)O(2) activated KATP current in smooth muscle cells (358 ± 99%; P < 0.05). Catalase, an enzyme that breaks down H(2)O(2), attenuated adenosine-induced coronary vasodilation, reducing the percent increase in flow from 284 ± 53 to 89 ± 13% (P < 0.05). Catalase reduced the repayment of flow debt in hearts from WT mice (84 ± 9%; P < 0.05) but had no effect on the already diminished repayment in hearts from A(2A) KO mice (98 ± 7%). Our findings suggest that adenosine A(2A) receptors are coupled to smooth muscle KATP channels in reactive hyperemia via the production of H(2)O(2) as a signaling intermediate.
Journal of Cardiovascular Pharmacology | 2013
Bunyen Teng; Daniel Fil; Stephen S.L. Tilley; Catherine Ledent; Thomas Krahn; Jamal S.J. Mustafa
Abstract: Concentration–response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10−5 to 10−4 M) and NECA (10−6 to 10−5 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10−6 to 10−4 and NECA at 10−8 to 10−5 M. The CCPA induced a significant constriction at 10−8 and 10−7 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10−7 to 10−5 M) in WT and no response in A2BKO except at 10−5 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10−7 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10−5 M of L-NAME, 10−6 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs.
Physiological Reports | 2013
Mohammed S. El‐Awady; Uthra Rajamani; Bunyen Teng; Stephen L. Tilley; S. Jamal Mustafa
The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox), and 4 are the major sources for reactive oxygen species (ROS) in cardiovascular system. In conditions such as ischemia–reperfusion injury, and hypoxia, both ROS and adenosine are released suggesting a possible interaction. We hypothesized that ROS generated through Nox is involved in adenosine‐induced coronary flow (CF) responses. Adenosine (10−8–10−5.5 mol/L) increased CF in isolated hearts from wild‐type (WT; C57BL/6), A1 adenosine receptor (AR) knockout (A1KO), A3AR KO (A3KO) and A1 and A3AR double KO (A1/A3DKO) mice. The Nox inhibitors apocynin (10−5 mol/L) and gp91 ds‐tat (10−6 mol/L) or the superoxide dismutase (SOD) and catalase‐mimicking agent EUK134 (50 μmol/L) decreased the adenosine‐enhanced CF in the WT and all the KOs. Additionally, adenosine increased phosphorylation of p47‐phox subunit and extracellular signal‐regulated kinase (ERK) 1/2 without changing protein expression of Nox isoforms in WT. Moreover, intracellular superoxide production was increased by adenosine and CGS‐21680 (a selective A2A agonist), but not BAY 60‐6583 (a selective A2B agonist), in mouse coronary artery smooth muscle cells (CASMCs) and endothelial cells (CAECs). This superoxide increase was inhibited by the gp91 ds‐tat and ERK 1/2 inhibitor (PD98059). In conclusion, adenosine‐induced increase in CF in isolated heart involves Nox2‐generated superoxide, possibly through ERK 1/2 phosphorylation with subsequent p47‐phox subunit phosphorylation. This adenosine/Nox/ROS interaction occurs in both CASMCs and CAECs, and involves neither A1 nor A3 ARs, but possibly A2A ARs in mouse.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Xueping Zhou; Bunyen Teng; Stephen L. Tilley; S. Jamal Mustafa
We previously demonstrated that A2A, but not A2B, adenosine receptors (ARs) mediate coronary reactive hyperemia (RH), possibly by producing H2O2 and, subsequently, opening ATP-dependent K(+) (KATP) channels in coronary smooth muscle cells. In this study, A1 AR knockout (KO), A3 AR KO, and A1 and A3 AR double-KO (A1/A3 DKO) mice were used to investigate the roles and mechanisms of A1 and A3 ARs in modulation of coronary RH. Coronary flow of isolated hearts was measured using the Langendorff system. A1 KO and A1/A3 DKO, but not A3 KO, mice showed a higher flow debt repayment [~30% more than wild-type (WT) mice, P < 0.05] following a 15-s occlusion. SCH-58261 (a selective A2A AR antagonist, 1 μM) eliminated the augmented RH, suggesting the involvement of enhanced A2A AR-mediated signaling in A1 KO mice. In isolated coronary arteries, immunohistochemistry showed an upregulation of A2A AR (1.6 ± 0.2 times that of WT mice, P < 0.05) and a higher magnitude of adenosine-induced H2O2 production in A1 KO mice (1.8 ± 0.3 times that of WT mice, P < 0.05), which was blocked by SCH-58261. Catalase (2,500 U/ml) and glibenclamide (a KATP channel blocker, 5 μM), but not N(G)-nitro-l-arginine methyl ester, also abolished the enhanced RH in A1 KO mice. Our data suggest that A1, but not A3, AR counteracts the A2A AR-mediated CF increase and that deletion of A1 AR results in upregulation of A2A AR and/or removal of the negative modulatory effect of A1 AR, thus leading to an enhanced A2A AR-mediated H2O2 production, KATP channel opening, and coronary vasodilation during RH. This is the first report implying that A1 AR has a role in coronary RH.
Cardiovascular Research | 2014
Bunyen Teng; Jonathan D. Smith; Michael E. Rosenfeld; Peggy Robinet; Mary E. Davis; R. Ray Morrison; S. Jamal Mustafa
AIMS The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. METHODS AND RESULTS Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. CONCLUSION The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Xueping Zhou; Bunyen Teng; Stephen S.L. Tilley; Catherine Ledent; S. Jamal Mustafa
We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 μM) nor selective A2AAR blockade by SCH-58261 (1 μM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 μM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 μM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.
Journal of Molecular and Cellular Cardiology | 2016
Hicham Labazi; Bunyen Teng; Zhichao Zhou; S. Jamal Mustafa
Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.