Buom-Yong Ryu
Chung-Ang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Buom-Yong Ryu.
Scientific Reports | 2015
Saidur Rahman; Woo-Sung Kwon; June-Sub Lee; Sung-Jae Yoon; Buom-Yong Ryu; Myung-Geol Pang
The xenoestrogen bisphenol-A (BPA) is a widespread environmental contaminant that has been studied for its impact on male fertility in several species of animals and humans. Growing evidence suggests that xenoestrogens can bind to receptors on spermatozoa and thus alter sperm function. The objective of the study was to investigate the effects of varying concentrations of BPA (0.0001, 0.01, 1, and 100 μM for 6 h) on sperm function, fertilization, embryonic development, and on selected fertility-related proteins in spermatozoa. Our results showed that high concentrations of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. High BPA concentrations also increased the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation and induced a precocious acrosome reaction, which resulted in poor fertilization and compromised embryonic development. In addition, BPA induced the down-regulation of β-actin and up-regulated peroxiredoxin-5, glutathione peroxidase 4, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase. Our results suggest that high concentrations of BPA alter sperm function, fertilization, and embryonic development via regulation and/or phosphorylation of fertility-related proteins in spermatozoa. We conclude that BPA-induced changes in fertility-related protein levels in spermatozoa may be provided a potential cue of BPA-mediated disease conditions.
Biology of Reproduction | 2010
Byung-Gak Kim; Chul Min Cho; Yong-An Lee; Bang-Jin Kim; Ki-Jung Kim; Yong-Hee Kim; Kwan-Sik Min; Chul Geun Kim; Buom-Yong Ryu
Gonocytes are long-lived primary germ cells that reside in the center of seminiferous cords until differentiation into spermatogonia that drive spermatogenesis. In pigs, gonocytes have research value in the production of transgenic offspring through germline modification and transplantation. However, the rarity of pig gonocytes has raised the need for an efficient isolation method. Therefore, in this study we use components of extracellular matrix, laminin, fibronectin, and collagen type IV and their derivative, gelatin, to establish a negative selection system for functionally viable gonocytes in neonatal pig. We then demonstrate functional analysis with genetic modification using lentiviral transduction and successfully transplant the donor gonocytes, which colonized the seminiferous tubules of the recipient mouse. The most effective selection method was established by sequential use of laminin and gelatin, in which the purity of gonocytes was 80% and the recovery rate of gonocytes was 78%. The selected gonocytes were labeled with fluorescent dye PKH26 and transplanted into busulfan-treated immunodeficient mouse testes. The fluorescent gonocytes colonized the recipient testes, and the resultant germ cell colonies were visible up to 4 mo after transplantation. When gonocytes were transplanted after transduction with an enhanced green fluorescent protein marker gene using lentiviral vectors, the transduced germ cell colonies were visible up to 6 mo and displayed an estimated transduction efficiency of 11.1%. These results can be applied and extended to isolate and enrich gonocytes of other species for in vitro and in vivo studies and to assist in genetic modification of male germline stem cells of livestock species.
PLOS ONE | 2013
Yong-An Lee; Yong-Hee Kim; Bang-Jin Kim; Byung-Gak Kim; Ki-Jung Kim; Joong-Hyuck Auh; Jonathan A. Schmidt; Buom-Yong Ryu
Development of techniques to isolate, culture, and transplant human spermatogonial stem cells (SSCs) has the future potential to treat male infertility. To maximize the efficiency of these techniques, methods for SSC cryopreservation need to be developed to bank SSCs for extended periods of time. Although, it has been demonstrated that SSCs can reinitiate spermatogenesis after freezing, optimal cryopreservation protocols that maximize SSC proliferative capacity post-thaw have not been identified. The objective of this study was to develop an efficient cryopreservation technique for preservation of SSCs. To identify efficient cryopreservation methods for long-term preservation of SSCs, isolated testis cells enriched for SSCs were placed in medium containing dimethyl sulfoxide (DMSO) or DMSO and trehalose (50 mM, 100 mM, or 200 mM), and frozen in liquid nitrogen for 1 week, 1 month, or 3 months. Freezing in 50 mM trehalose resulted in significantly higher cell viability compared to DMSO at all thawing times and a higher proliferation rate compared to DMSO for the 1 week freezing period. Freezing in 200 mM trehalose did not result in increased cell viability; however, proliferation activity was significantly higher and percentage of apoptotic cells was significantly lower compared to DMSO after freezing for 1 and 3 months. To confirm the functionality of SSCs frozen in 200 mM trehalose, SSC transplantation was performed. Donor SSCs formed spermatogenic colonies and sperm capable of generating normal progeny. Collectively, these results indicate that freezing in DMSO with 200 mM trehalose serves as an efficient method for the cryopreservation of SSCs.
Stem Cell Research | 2013
Won-Young Lee; Hyun-Jung Park; Ran Lee; Kyung-Hoon Lee; Yong-Hee Kim; Buom-Yong Ryu; Nam-Hyung Kim; Jin-Hoi Kim; Jae-Hwan Kim; Sung-Hwan Moon; Jin-Ki Park; Dong-Hoon Kim; Hyuk Song
The objective of this study was to establish a porcine spermatogonial germ cell (pSGC) line and develop an in vitro culture system. Isolated total testicular cells (TTCs) from 5-day-old porcine testes were primary cultured at 31, 34, and 37°C. Although the time of colony appearance was delayed at 31°C, strong alkaline phosphatase staining, expressions of pluripotency marker genes such as OCT4, NANOG, and THY1, and the gene expressions of the undifferentiated germ cell markers PLZF and protein gene product 9.5 (PGP9.5) were identified compared to 34 and 37°C. Cell cycle analysis for both pSGC and feeder cells at the three temperatures revealed that more pSGCs were in the G2/M phase at 31°C than 37°C at the subculture stage. In vitro, pSGCs could stably maintain undifferentiated germ cell and stem cell characteristics for over 60days during culture at 31°C. Xenotransplantation of pSGCs to immune deficient mice demonstrated a successful colonization and localization on the seminiferous tubule basement membrane in the recipient testes. In conclusion, pSGCs from neonatal porcine were successfully established and cultured for long periods under a low temperature culture environment in vitro.
Theriogenology | 2011
El-Sayed A. Mohamed; Yoo-Jin Park; Won-Hee Song; Dong-Ha Shin; Young-Ah You; Buom-Yong Ryu; Myung-Geol Pang
There is growing evidence that endocrine disruptors bind to hormone receptors; since these receptors are present on the sperm membrane, sperm are potentially a useful model for examining estrogenic activities of endocrine disruptors. The objective of the present study was to compare the effects of two xenoestrogenic compounds (genistein and 4-tert-octylphenol) to those of two steroids (estrogen and progesterone) and heparin on in vitro capacitation and the acrosome reaction in a porcine sperm model. Porcine sperm were incubated with various concentrations (0.001-100 μM) of each chemical for 15 or 30 min, and then capacitation and the acrosome reaction were assessed using chlortetracycline. Estrogen and progesterone were considerably more potent than the other chemicals in stimulating capacitation. Estrogen stimulated sperm capacitation at all tested concentrations after 15 min of incubation (P < 0.05), whereas progesterone stimulated sperm capacitation at all tested concentrations after 15 and 30 min (P < 0.05). The effect of genistein on sperm capacitation was comparable with that of estrogen, and it was the most potent in stimulating the acrosome reaction. Genistein stimulated the acrosome reaction at all tested concentrations after 30 min (P < 0.05). However, 4-tert-octylphenol had the least effect on capacitation and the acrosome reaction. In summary, since all chemicals studied effectively altered capacitation and the acrosome reaction, it was concluded that porcine sperm could be a useful model for in vitro screening of potential endocrine disruptors. It was noteworthy that concurrent comparisons to steroids increased the ability to determine estrogenic characteristics of the tested chemicals.
Environmental Health Perspectives | 2016
Saidur Rahman; Woo-Sung Kwon; Polash Chandra Karmakar; Sung-Jae Yoon; Buom-Yong Ryu; Myung-Geol Pang
Background: Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. Objectives: The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Methods: Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. Results: BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Conclusions: Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238–245; http://dx.doi.org/10.1289/EHP378
Theriogenology | 2010
T.S. Kim; Hoon-Sung Choi; Buom-Yong Ryu; G.T. Gang; S.U. Kim; Deog-Bon Koo; Jin-Man Kim; J.H. Han; C.K. Park; S. Her; Dong Seok Lee
Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for approximately 3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis.
Journal of Animal Science | 2013
Y.-H. Kim; Byung-Gak Kim; B.-G. Kim; Yong-An Lee; K.-J. Kim; H.-J. Chung; S. Hwang; J.-S. Woo; J.-K. Park; J. A. Schmidt; Myung-Geol Pang; Buom-Yong Ryu
The objective of this study was to use fluorescence-activated cell sorting (FACS) and spermatogonial stem cell (SSC) xenotransplantation to identify cell surface markers of putative porcine SSC. Analysis of porcine testis cells enriched for spermatogonia using FACS indicated that nearly half of stage-specific embryonic antigen-1 (SSEA-1) expressing testis cells expressed the undifferentiated spermatogonia marker protein gene product 9.5 (PGP 9.5) whereas significantly fewer (P < 0.05) cells selected for thymus cell antigen-1 (Thy-1), also known as cluster of differentiation 90 (CD90), cluster of differentiation 9 (CD9), or other SSC markers expressed PGP 9.5. Immunocytochemical analysis indicated that promyelocytic leukemia zinc finger (PLZF) protein and germ cell lineage marker VASA homolog (VASA), also known as DEAD box protein 4 (DDX4), were expressed by SSEA-1 expressing germ cells. Spermatogonial stem cell xenotransplantation of testis cell populations enriched for cells expressing SSEA-1 generated significantly (P < 0.05; greater than 15-fold) more colonies of donor derived germ cells than unselected testis cells. In conclusion, these data indicate that SSC markers identified in rodents are likely not entirely conserved in pigs and that SSEA-1 is a marker for porcine undifferentiated spermatogonia including SSC in prepubertal boars and its expression may serve as a target for the further study of porcine germ cells.
The Journal of Neuroscience | 2014
Dong Hoon Hwang; Hae Young Shin; Min Jung Kwon; Jun Young Choi; Buom-Yong Ryu; Byung Gon Kim
Combining cell transplantation with activity-based rehabilitation is a promising therapeutic approach for spinal cord repair. The present study was designed to investigate potential interactions between the transplantation (TP) of neural stem cells (NSCs) obtained at embryonic day 14 and treadmill training (TMT) in promoting locomotor recovery and structural repair in rat contusive injury model. Combination of TMT with NSC TP at 1 week after injury synergistically improved locomotor function. We report here that combining TMT increased the survival of grafted NSCs by >3-fold and >5-fold at 3 and 9 weeks after injury, respectively. The number of surviving NSCs was significantly correlated with the extent of locomotor recovery. NSCs grafted into the injured spinal cord were under cellular stresses induced by reactive nitrogen or oxygen species, which were markedly attenuated by TMT. TMT increased the concentration of insulin-like growth factor-1 (IGF-1) in the CSF. Intrathecal infusion of neutralizing IGF-1 antibodies, but not antibodies against either BDNF or Neurotrophin-3 (NT-3), abolished the enhanced survival of NSC grafts by TMT. The combination of TP and TMT also resulted in tissue sparing, increased myelination, and restoration of serotonergic fiber innervation to the lumbar spinal cord to a larger extent than that induced by either TP or TMT alone. Therefore, we have discovered unanticipated beneficial effects of TMT in modulating the survival of grafted NSCs via IGF-1. Our study identifies a novel neurobiological basis for complementing NSC-based spinal cord repair with activity-based neurorehabilitative approaches.
Reproduction | 2011
Purevjargal Naidansuren; Cha-Won Park; Sang-Hwan Kim; Tseeleema Nanjidsuren; Jong-Ju Park; Seong-Jo Yun; Bo-Woong Sim; Seongsoo Hwang; Myung-Hwa Kang; Buom-Yong Ryu; Sue-Yoon Hwang; Jong Taek Yoon; Keitaro Yamanouchi; Kwan-Sik Min
The enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD) catalyzes the conversion of progesterone to its inactive form, 20α-hydroxyprogesterone. This enzyme plays a critical role in the regulation of luteal function in female mammals. In this study, we conducted the characterization and functional analyses of bovine 20α-HSD from placental and ovarian tissues. The nucleotide sequence of bovine 20α-HSD showed significant homology to that of goats (96%), humans (84%), rabbits (83%), and mice (81%). The mRNA levels increased gradually throughout the estrous cycle, the highest being in the corpus luteum (CL) 1 stage. Northern blot analysis revealed a 1.2 kb mRNA in the bovine placental and ovarian tissues. An antibody specific to bovine 20α-HSD was generated in a rabbit immunized with the purified, recombinant protein. Recombinant 20α-HSD protein produced in mammalian cells had a molecular weight of ∼37 kDa. Bacterially expressed bovine 20α-HSD protein showed enzymatic activity. The expression pattern of the 20α-HSD protein in the pre-parturition placenta and the CL1 stage of the estrous cycle was similar to the level of 20α-HSD mRNA expression. Immunohistochemical analysis also revealed that bovine 20α-HSD protein was intensively localized in the large luteal cells during the late estrous cycle.