Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Burak Derkus is active.

Publication


Featured researches published by Burak Derkus.


Biosensors and Bioelectronics | 2013

Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy

Burak Derkus; Emel Emregul; Canan Yücesan; Kaan C. Emregül

A novel highly sensitive impedimetric Myelin Basic Protein (MBP) immunosensor for the determination of a Multiple Sclerosis (MS) autoantibody, Anti-Myelin Basic Protein (Anti-MBP) was developed by immobilization of MBP on Gelatin and Gelatin-Titanium Dioxide (TiO₂) modified platinium electrode. Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopic (EIS) methods were employed in determination of the electrode responses and applicability. Gelatin-MBP and gelatin-TiO₂-MBP electrodes were prepared by chemical immobilization of the substrates onto the platinium electrodes. The formal potentials of MBP confined on gelatin-MBP and gelatin-TiO₂-MBP surfaces are estimated to be 195 and 205 mV, respectively. Thus, a little more reversible electron transfer reaction occurs on the gelatin-TiO₂-MBP immunosensor surface. The peak separations of MBP (150 mV and 110 mV s(-1) at 100 mV s(-1)) and the asymmetric anodic and cathodic peak currents indicate that the electron transfer between Anti-MBP and gelatin-MBP/gelatin-TiO₂-MBP immunosensor is quasireversible. Control samples containing a nonspecific human immunoglobulin G (hIgG) antibody were also studied, and calibration curves were obtained by subtraction of the responses for specific and nonspecific antibody-based sensors. Gelatin-MBP and gelatin-TiO₂-MBP immunosensors have detection limit of 0.1528 ng ml(-1) and 0.1495 ng ml(-1) respectively. This immunosensor exhibits high sensitivity and low response times (58 s for gelatin-MBP and 46 s for gelatin-TiO₂-MBP immunosensor). The developed label-free impedimetric immunosensors also provide a simple and sensitive detection method for the specific determination of Anti-MBP in human cerebrospinal fluid (CSF) and serum samples.


Biosensors and Bioelectronics | 2016

Applying the miniaturization technologies for biosensor design.

Burak Derkus

Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology.


Bioelectrochemistry | 2013

A novel carboxymethylcellulose–gelatin–titanium dioxide–superoxide dismutase biosensor; electrochemical properties of carboxymethylcellulose–gelatin–titanium dioxide–superoxide dismutase

Emel Emregul; Ozge Kocabay; Burak Derkus; Kaan C. Emregül; Ali Sınağ; Kamran Polat

A novel highly sensitive electrochemical carboxymethylcellulose-gelatin-TiO(2)-superoxide dismutase biosensor for the determination of O(2)(•-) was developed. The biosensor exhibits high analytical performance with a wide linear range (1.5 nM to 2 mM), low detection limit (1.5 nM), high sensitivity and low response time (1.8s). The electron transfer of superoxide dismutase was first accomplished at the carboxymethylcellulose-gelatin-Pt and carboxymethylcellulose-gelatin-TiO(2)-Pt surface. The electron transfer between superoxide dismutase and the carboxymethylcellulose-gelatin-Pt wihout Fe(CN)(6)(4-/3-) and carboxymethylcellulose-gelatin-Pt, carboxymethylcellulose-gelatin-TiO(2)-Pt with Fe(CN)(6)(4-/3-) is quasireversible with a formal potential of 200 mV, 207 mV, and 200 mV vs Ag|AgCl respectively. The anodic (ks(a)) and cathodic (ks(c)) electron transfer rate constants and the anodic (α(a)) and cathodic (α(c)) transfer coefficients were evaluated: ks(a)=6.15 s(-1), α(a)=0.79, and ks(c)=1.48 s(-1) α(c)=0.19 for carboxymethylcellulose-superoxide dismutase without Fe(CN)(6)(4-/3-), ks(a)=6.77 s(-1), α(a)=0.87, and ks(c)=1 s(-1) α(c)=0.13 for carboxymethylcellulose-superoxide dismutase with Fe(CN)(6)(4-/3-), ks(a)=6.85 s(-1), α(a)=0.88, and ks(c)=0.76 s(-1) α(c)=0.1 carboxymethylcellulose-gelatin-TiO(2)-superoxide dismutase. The electron transfer rate between superoxide dismutase and the Pt electrode is remarkably enhanced due to immobilizing superoxide dismutase in carboxymethylcellulose-gelatin and TiO(2) nanoparticles tend to act like nanoscale electrodes.


Talanta | 2015

Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode.

Burak Derkus; Emel Emregul; Kaan C. Emregül

In this paper, amperometric enzyme-free sensors using superoxide dismutase (SOD) enzyme as a catalyst for the dismutation reaction of superoxides into oxygen and hydrogen peroxide, enabling superoxide radical detection have been described. For this purpose, the surfaces of screen-printed platinum electrodes have been modified with gelatin composites of CuO, ZnO and CuZn nanoparticles with the expectation of an increase in catalytic effect toward the dismutation reaction. SOD containing electrodes were also prepared for comparative studies in which glutaraldehyde was used as a cross-linker for the immobilization of SOD to the nanocomposite materials. Electrochemical measurements were carried out using a screen-printed electrochemical system that included potassiumferrocyanide (K4[Fe(CN)6]) and potassiumferricyanide (K3[Fe(CN)6]) as the redox probes. The results revealed that the enzyme-free detection method using CuZn nanoparticles can determine superoxide radicals with high performance compared to other detection methods prepared with different nanoparticles by mimicking the active region of superoxide dismutase enzyme. The anodic (ks(a)) and cathodic (ks(c)) electron transfer rate constants and the anodic (α(a)) and cathodic (α(c)) transfer coefficients were evaluated and found to be ks(a)=6.31 s(-1) and α(a)=0.81, ks(c)=1.48 s(-1) and α(c)=0.19 for the gelatin-CuZn-SOD electrode; ks(a)=6.15 s(-1) and α(a)=0.79, ks(c)=1,63 s(-1) and α(c)=0.21 for the enzyme-free gelatin-CuZn electrode. The enzyme-free electrode showed nearly 80% amperometric performance with respect to the enzyme containing electrode indicating the superior functionality of enzyme-free electrode for the detection of superoxide radicals.


Materials Science and Engineering: C | 2015

Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials

Burak Derkus; Kaan C. Emregül; Emel Emregul

This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin-chitosan structures due to the presence of structural active groups.


Cell Biology International | 2017

A new approach in stem cell research—Exosomes: Their mechanism of action via cellular pathways

Burak Derkus; Kaan C. Emregül; Emel Emregul

Exosomes are nano‐sized vesicles surrounded by a lipid membrane, which tend to be secreted toward extra‐cellular environments. Despite being defined as vesicles involved in excretion of molecular wastes by Rose Johnstone in the 1970s, further studies revealed them to be effective in various biological processes such as cancer development, regulation of the immune system, intercellular communication, stem cell biology, and tissue/organ regeneration. Although many studies dealing with the role of exosomes in stem cell differentiation and the use of exosomes isolated from stem cells for the treatment of several diseases have been published, the involved mechanisms remain largely unknown. Further understanding of these mechanisms, which include the involved cellular pathways, may improve the use of exosomes in diagnostic and treatment methods, especially for those involving stem cells. Here, we describe some recent data describing the action mechanism of stem cell‐derived exosomes focusing on the implicated cellular pathways, hoping to provide novel information that will be useful for cell biology scientists working in this field.


Colloids and Surfaces B: Biointerfaces | 2017

Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products

Yavuz Emre Arslan; Tugba Sezgin Arslan; Burak Derkus; Emel Emregul; Kaan C. Emregül

In the present study, we aimed at fabricating an osteoinductive biocomposite scaffold using keratin obtained from human hair, jellyfish collagen and eggshell-derived nano-sized spherical hydroxyapatite (nHA) for bone tissue engineering applications. Keratin, collagen and nHA were characterized with the modified Lowry method, free-sulfhydryl groups and hydroxyproline content analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA) which confirmed the success of the extraction and/or isolation processes. Human adipose mesenchymal stem cells (hAMSCs) were isolated and the cell surface markers were characterized via flow cytometry analysis in addition to multilineage differentiation capacity. The undifferentiated hAMSCs were highly positive for CD29, CD44, CD73, CD90 and CD105, but were not seen to express hematopoietic cell surface markers such as CD14, CD34 and CD45. The cells were successfully directed towards osteogenic, chondrogenic and adipogenic lineages in vitro. The microarchitecture of the scaffolds and cell attachment were evaluated using scanning electron microscopy (SEM). The cell viability on the scaffolds was assessed by the MTT assay which revealed no evidence of cytotoxicity. The osteogenic differentiation of hAMSCs on the scaffolds was determined histologically using alizarin red S, osteopontin and osteonectin stainings. Early osteogenic differentiation markers of hAMSCs were significantly expressed on the collagen-keratin-nHA scaffolds. In conclusion, it is believed that collagen-keratin-nHA osteoinductive biocomposite scaffolds have the potential of being used in bone tissue engineering.


Biosensors and Bioelectronics | 2017

Simultaneous quantification of Myelin Basic Protein and Tau proteins in cerebrospinal fluid and serum of Multiple Sclerosis patients using nanoimmunosensor.

Burak Derkus; Pınar Acar Bozkurt; Metin Tülü; Kaan C. Emregül; Canan Yücesan; Emel Emregul

This study was aimed at the development of an immunosensor for the simultaneous quantification of Myelin Basic Protein (MBP) and Tau proteins in cerebrospinal fluid (CSF) and serum, obtained from Multiple Sclerosis (MS) patients. The newly developed GO/pPG/anti-MBP/anti-Tau nanoimmunosensor has been established by immobilization of MBP and Tau antibodies. The newly developed nanoimmunosensor was tested, optimized and characterized using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The developed nanoimmunosensor was seen to have detection limits of 0.30nM for MBP and 0.15nM for Tau proteins which were sufficient for the levels to be analysed in neuro-clinic. The clinical study performed using CSF and serum of MS patients showed that the designed nanoimmunosensor was capable of detecting the proteins properly, that were essentially proven by ELISA.


RSC Advances | 2016

Detergent-free decellularization of bovine costal cartilage for chondrogenic differentiation of human adipose mesenchymal stem cells in vitro

Evren Erten; Tugba Sezgin Arslan; Burak Derkus; Yavuz Emre Arslan

In this study, we report a novel, detergent-free decellularization protocol for the preparation of intact cartilage ECM-based scaffolds (CEbS) during an effective decalcification process. On treatment with 10 mM Na2EDTA, the amount of calcium lost was around 55% ± 5% (percent ± S.D.%) (n = 3) and nearly 84% of the nuclear material was removed; however, the most effective removal was observed on treatment with 10 mM Na2EDTA combined with 0.5% Triton X-100 for 48 hours. Notably, our proposed method decreased the GAG content by only 5% compared to untreated CEbS (380.37 ± 16.02 μg mg−1 dry weight). There was no significant difference in hydroxyproline content between the untreated (13.04 ± 1.51 μg mg−1 dry weight) sample and our proposed method (12.95 ± 1.55 μg mg−1 dry weight). The scaffold morphology and cell attachment were evaluated using SEM micrographs, and the cells that were inoculated with detergent-free decellularized CEbS for 14, 21 and 28 days covered the scaffold area, including the porous cavities. Microscopic observations showed that the cell density increased day by day and there was no cytotoxic evidence for the scaffolds, which is a desirable environment for cells. The histochemical and immunohistochemical assessments are supported by glycosaminoglycan and hydroxyproline assays. The proposed detergent-free decellularization technique could be a promising method for cartilage tissue regeneration.


Talanta | 2016

Enhancement of aptamer immobilization using egg shell-derived nano-sized spherical hydroxyapatite for thrombin detection in neuroclinic.

Burak Derkus; Yavuz Emre Arslan; Kaan C. Emregül; Emel Emregul

In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin.

Collaboration


Dive into the Burak Derkus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yavuz Emre Arslan

Çanakkale Onsekiz Mart University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tugba Sezgin Arslan

Çanakkale Onsekiz Mart University

View shared research outputs
Top Co-Authors

Avatar

Abdullah Tahir Bayraç

Karamanoğlu Mehmetbey University

View shared research outputs
Top Co-Authors

Avatar

Evren Erten

Çanakkale Onsekiz Mart University

View shared research outputs
Top Co-Authors

Avatar

Hidayet Mazi

University of Gaziantep

View shared research outputs
Researchain Logo
Decentralizing Knowledge