Burcin Altinbas
Uludağ University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Burcin Altinbas.
Autonomic Neuroscience: Basic and Clinical | 2015
Burcin Altinbas; Mustafa Sertac Yilmaz; Vahide Savci; Jerzy Jochem; Murat Yalcin
Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats.
Autonomic Neuroscience: Basic and Clinical | 2015
Mustafa Sertac Yilmaz; Burcin Altinbas; Gokcen Guvenc; Leman Gizem Erkan; Ozge Avsar; Vahide Savci; Duygu Udum Kucuksen; Ilker Arican; Murat Yalcin
This study investigated the cardiovascular effects of nesfatin-1 in normotensive rats and animals subjected to hypotensive hemorrhage. Hemorrhagic hypotension was induced by withdrawal 2 mL blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP) and heart rate (HR). Intracerebroventricularly (i.c.v.) administered nesfatin-1 (100 pmol) increased MAP in both normotensive and hemorrhaged rats. Nesfatin-1 also caused bradycardia in normotensive and tachycardia in hemorrhaged rats. Centrally injected nesfatin-1 (100 pmol, i.c.v.) also increased plasma catecholamine, vasopressin and renin concentrations in control animals and potentiated the rise in all three cardiovascular mediators produced by hemorrhage. These findings indicate that centrally administered nesfatin-1 causes a pressor response in conscious normotensive and hemorrhaged rats and suggest that enhanced sympathetic activity and elevated vasopressin and renin concentrations mediate the cardiovascular effects of the peptide.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2012
Burcin Altinbas; Bora B. Topuz; Mustafa Sertac Yilmaz; Cenk Aydin; Vahide Savci; Jerzy Jochem; Sami Aydin; Murat Yalcin
Melittin is a polypeptide component of bee venom that leads to an increase in arachidonic acid release and subsequently in prostaglandin synthesis by activating phospholipase A(2). Recently we demonstrated that centrally or peripherally administrated melittin caused pressor effect and central thromboxane A(2) (TXA(2)) and cholinergic system mediated these effects of melittin. Also centrally injected histamine leads to pressor and bradycardic response by activating central histamine receptors in normotensive rats and central cholinergic system involved the effects of histamine. The present study demonstrates an involvement of the central histaminergic system in melittin-induced cardiovascular effect in normotensive rats. Experiments were carried out in male Sprague Dawley rats. Intracerebroventricularly (i.c.v.) injected melittin (0.5, 1 and 2 nmol) caused dose- and time-dependent increases in mean arterial pressure (MAP) and decrease in heart rate (HR) as we reported previously. Moreover, H(2) receptor antagonist ranitidine (50 nmol; i.c.v.) almost completely and H(3)/H(4) receptor antagonist thioperamide (50 nmol; i.c.v.) partly blocked melittin-evoked cardiovascular effects, whereas H(1) receptor blocker chlorpheniramine (50 nmol; i.c.v.) had no effect. Also centrally injected melittin was accompanied by 28% increase in extracellular histamine concentration in the posterior hypothalamus, as shown in microdialysis studies. In conclusion, results show that centrally administered melittin causes pressor and bradycardic response in conscious rats. Moreover, according to our findings, there is an involvement of the central histaminergic system in melittin-induced cardiovascular effects.
Autonomic Neuroscience: Basic and Clinical | 2015
Leman Gizem Erkan; Burcin Altinbas; Gokcen Guvenc; Selim Alcay; Mehmed Berk Toker; Burcu Ustuner; Duygu Udum Kucuksen; Murat Yalcin
The current study was designed to determine the effect of centrally administrated arachidonic acid (AA) on plasma gonadotropin hormone-releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone level, and sperm parameters, and to show the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway in AA-induced hormonal and sperm parameter effects. Studies were performed in male Sprague-Dawley rats. A total of 150 or 300 μl/5 μl doses of AA were injected intracerebroventricularly (icv). AA significantly caused dose- and time-dependent increases in plasma FSH, LH and testosterone levels of animals, but not plasma GnRH level. AA also significantly increased sperm motility of the rats without change sperm number. Pretreated with ibuprofen, a nonselective COX inhibitor (250 μg/5 μl; icv), and furegrelate, a TXA2 synthesis inhibitor (250 μg/5 μl; icv), prevented AA-evoked increase in plasma FSH, LH and testosterone levels, and sperm motility. In conclusion, our findings show that centrally administered AA increases plasma FSH, LH and testosterone levels and sperm motility of conscious male rats. Moreover, according to our findings, central COX-TXA2 signaling pathway mediates these AA-induced effects.
Canadian Journal of Physiology and Pharmacology | 2014
Burcin Altinbas; Bora B. Topuz; Tuncay İlhan; Mustafa Sertac Yilmaz; Hatice Erdost; Murat Yalcin
The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions.
Respiratory Physiology & Neurobiology | 2014
Bora B. Topuz; Burcin Altinbas; Mustafa Sertac Yilmaz; Sikha Saha; Trevor Batten; Vahide Savci; Murat Yalcin
CDP-choline is an endogenous metabolite in phosphatidylcholine biosynthesis. Exogenous administration of CDP-choline has been shown to affect brain metabolism and to exhibit cardiovascular, neuroendocrine neuroprotective actions. On the other hand, little is known regarding its respiratory actions and/or central mechanism of its respiratory effect. Therefore the current study was designed to investigate the possible effects of centrally injected CDP-choline on respiratory system and the mediation of the central cholinergic receptors and phospholipase to thromboxane signaling pathway on CDP-choline-induced respiratory effects in anaesthetized rats. Intracerebroventricularly (i.c.v.) administration of CDP-choline induced dose- and time-dependent increased respiratory rates, tidal volume and minute ventilation of male anaesthetized Spraque Dawley rats. İ.c.v. pretreatment with atropine failed to alter the hyperventilation responses to CDP-choline whereas mecamylamine, cholinergic nicotinic receptor antagonist, mepacrine, phospholipase A2 inhibitor, and neomycin phospholipase C inhibitor, blocked completely the hyperventilation induced by CDP-choline. In addition, central pretreatment with furegrelate, thromboxane A2 synthesis inhibitor, also partially blocked CDP-choline-evoked hyperventilation effects. These data show that centrally administered CDP-choline induces hyperventilation which is mediated by activation of central nicotinic receptors and phospholipase to thromboxane signaling pathway.
Neuropeptides | 2018
Begum Aydin; Gokcen Guvenc; Burcin Altinbas; Nasir Niaz; Murat Yalcin
Nesfatin-1, a peptide whose receptor is yet to be identified, has been shown to be involved in the modulation of feeding, stress, and metabolic responses. Recently, increasing evidence has supported a modulatory role of nesfatin-1 in cardiovascular activity. We have previously reported that nesfatin-1 causes an increase in blood pressure in normotensive and hypotensive rats by increasing plasma catecholamine, vasopressin, and renin levels. Recent reports suggest that nesfatin-1 may activate the central cholinergic system. However, there is no evidence showing an interaction between central nesfatin-1 and the cholinergic system. Therefore, this study aimed to determine whether the central cholinergic system may have a functional role in the nesfatin-1-induced cardiovascular effect observed in normotensive rats. Intracerebroventricular injection of nesfatin-1 caused short-term increases in mean arterial pressure and heart rate responses including bradycardic/tachycardic phases in normotensive animals. Central injection of nesfatin-1 increased the acetylcholine and choline levels in the posterior hypothalamus, as shown in microdialysis studies. Central pretreatment with the cholinergic muscarinic receptor antagonist atropine and/or nicotinic receptor antagonist mecamylamine blocked nesfatin-1-induced cardiovascular effects. In conclusion, the results show that centrally administered nesfatin-1 produces a pressor effect on blood pressure and heart rate responses including bradycardic/tachycardic phases in normotensive rats. Moreover, according to our findings, the central cholinergic system can modulate nesfatin-1-evoked cardiovascular activity.
Respiratory Physiology & Neurobiology | 2017
Leman Gizem Erkan; Burcin Altinbas; Gokcen Guvenc; Begum Aydin; Nasir Niaz; Murat Yalcin
Arachidonic acid (AA), which is released from synaptic membrane phospholipid by neuroreceptor-initiated activation of phospholipase A2, is abundant in the brain and works as a neurotransmitter and/or neuromodulator in the central nervous system. Recently we reported that centrally injected AA generated pressor and hyperventilation effects by activating thromboxane A2 (TXA2) signaling pathway. The present study was designed to investigate the mediation of other metabolites of AA such as prostaglandin (PG) D, PGE and PGF2α alongside TXA2 in the AA-evoked cardiorespiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA caused pressor, bradycardic and hyperventilation responses by increasing pO2 and decreasing pCO2 in adult male anaesthetized Sprague Dawley rats. Pretreatment (i.c.v) with different doses of DP/EP prostanoid receptor antagonist, AH6809 or FP prostanoid receptor antagonist, PGF2α dimethylamine partially blocked the cardiorespiratory and blood gas changes induced by AA. In conclusion, these data plainly report that central PGD, PGE or PGF2α might mediate, at least partly, centrally administered AA-evoked cardiorespiratory and blood gas responses.
Respiratory Physiology & Neurobiology | 2016
Leman Gizem Erkan; Gokcen Guvenc; Burcin Altinbas; Nasir Niaz; Murat Yalcin
Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway.
Brain Research | 2014
Bora B. Topuz; Burcin Altinbas; Tuncay İlhan; Mustafa Sertac Yilmaz; Hatice Erdost; Sikha Saha; Vahide Savci; Murat Yalcin