Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Burcu Ayoglu is active.

Publication


Featured researches published by Burcu Ayoglu.


Embo Molecular Medicine | 2014

Affinity proteomics within rare diseases: a BIO-NMD study for blood biomarkers of muscular dystrophies

Burcu Ayoglu; Amina Chaouch; Hanns Lochmüller; Luisa Politano; Enrico Bertini; Pietro Spitali; Monika Hiller; Eric H Niks; Francesca Gualandi; Fredrik Pontén; Kate Bushby; Annemieke Aartsma-Rus; Elena Schwartz; Yannick Le Priol; Volker Straub; Mathias Uhlén; Sebahattin Cirak; Peter A. C. 't Hoen; Francesco Muntoni; Alessandra Ferlini; Jochen M. Schwenk; Peter Nilsson; Cristina Al-Khalili Szigyarto

Despite the recent progress in the broad‐scaled analysis of proteins in body fluids, there is still a lack in protein profiling approaches for biomarkers of rare diseases. Scarcity of samples is the main obstacle hindering attempts to apply discovery driven protein profiling in rare diseases. We addressed this challenge by combining samples collected within the BIO‐NMD consortium from four geographically dispersed clinical sites to identify protein markers associated with muscular dystrophy using an antibody bead array platform with 384 antibodies. Based on concordance in statistical significance and confirmatory results obtained from analysis of both serum and plasma, we identified eleven proteins associated with muscular dystrophy, among which four proteins were elevated in blood from muscular dystrophy patients: carbonic anhydrase III (CA3) and myosin light chain 3 (MYL3), both specifically expressed in slow‐twitch muscle fibers and mitochondrial malate dehydrogenase 2 (MDH2) and electron transfer flavoprotein A (ETFA). Using age‐matched sub‐cohorts, 9 protein profiles correlating with disease progression and severity were identified, which hold promise for the development of new clinical tools for management of dystrophinopathies.


Molecular & Cellular Proteomics | 2013

Autoantibody Profiling in Multiple Sclerosis Using Arrays of Human Protein Fragments

Burcu Ayoglu; Anna Häggmark; Mohsen Khademi; Tomas Olsson; Mathias Uhlén; Jochen M. Schwenk; Peter Nilsson

Profiling the autoantibody repertoire with large antigen collections is emerging as a powerful tool for the identification of biomarkers for autoimmune diseases. Here, a systematic and undirected approach was taken to screen for profiles of IgG in human plasma from 90 individuals with multiple sclerosis related diagnoses. Reactivity pattern of 11,520 protein fragments (representing ∼38% of all human protein encoding genes) were generated on planar protein microarrays built within the Human Protein Atlas. For more than 2,000 antigens IgG reactivity was observed, among which 64% were found only in single individuals. We used reactivity distributions among multiple sclerosis subgroups to select 384 antigens, which were then re-evaluated on planar microarrays, corroborated with suspension bead arrays in a larger cohort (n = 376) and confirmed for specificity in inhibition assays. Among the heterogeneous pattern within and across multiple sclerosis subtypes, differences in recognition frequencies were found for 51 antigens, which were enriched for proteins of transcriptional regulation. In conclusion, using protein fragments and complementary high-throughput protein array platforms facilitated an alternative route to discovery and verification of potentially disease-associated autoimmunity signatures, that are now proposed as additional antigens for large-scale validation studies across multiple sclerosis biobanks.


Expert Review of Molecular Diagnostics | 2011

Systematic antibody and antigen-based proteomic profiling with microarrays

Burcu Ayoglu; Anna Häggmark; Maja Neiman; Ulrika Igel; Mathias Uhlén; Jochen M. Schwenk; Peter Nilsson

Current approaches within affinity-based proteomics are driven both by the accessibility and availability of antigens and capture reagents, and by suitable multiplexed technologies onto which these are implemented. By combining planar microarrays and other multiparallel systems with sets of reagents, possibilities to discover new and unpredicted protein–disease associations, either via directed hypothesis-driven or via undirected hypothesis-generating target selection, can be created. In the following stages, the discoveries made during these screening phases have to be verified for potential clinical relevance based on both technical and biological aspects. The use of affinity tools throughout discovery and verification has the potential to streamline the introduction of new markers, as transition into clinically required assay formats appears straightforward. In this article, we summarize some of the current building blocks within array- and affinity-based proteomic profiling with a focus on body fluids, by giving a perspective on how current and upcoming developments in this bioscience could enable a path of pursuit for biomarker discovery.


Journal of Proteome Research | 2014

Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis

Sanna Byström; Burcu Ayoglu; Anna Häggmark; Nicholas Mitsios; Mun-Gwan Hong; Kimi Drobin; Björn Forsström; Claudia Fredolini; Mohsen Khademi; Sandra Amor; Mathias Uhlén; Tomas Olsson; Jan Mulder; Peter Nilsson; Jochen M. Schwenk

The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Anoctamin 2 identified as an autoimmune target in multiple sclerosis

Burcu Ayoglu; Nicholas Mitsios; Ingrid Kockum; Mohsen Khademi; Arash Zandian; Ronald Sjöberg; Björn Forsström; Johan Bredenberg; Izaura Lima Bomfim; Erik Holmgren; Hans Grönlund; André Ortlieb Guerreiro-Cacais; Nada Abdelmagid; Mathias Uhlén; Tim Waterboer; Lars Alfredsson; Jan Mulder; Jochen M. Schwenk; Tomas Olsson; Peter Nilsson

Significance Despite the growing evidence that autoantibodies are team players in the pathogenesis of multiple sclerosis (MS), the target autoantigens are yet to be identified. In this work, we mined the autoantibody repertoire within MS by screening more than 2,000 plasma samples from patients with MS and controls and identified increased autoantibody reactivity against an ion-channel protein called “anoctamin 2” (ANO2). This finding points toward an ANO2 autoimmune sub-phenotype in MS and might contribute to the development of clinical algorithms to characterize a subgroup of MS patients. Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system and also is regarded as an autoimmune condition. However, the antigenic targets of the autoimmune response in MS have not yet been deciphered. In an effort to mine the autoantibody repertoire within MS, we profiled 2,169 plasma samples from MS cases and population-based controls using bead arrays built with 384 human protein fragments selected from an initial screening with 11,520 antigens. Our data revealed prominently increased autoantibody reactivity against the chloride-channel protein anoctamin 2 (ANO2) in MS cases compared with controls. This finding was corroborated in independent assays with alternative protein constructs and by epitope mapping with peptides covering the identified region of ANO2. Additionally, we found a strong interaction between the presence of ANO2 autoantibodies and the HLA complex MS-associated DRB1*15 allele, reinforcing a potential role for ANO2 autoreactivity in MS etiopathogenesis. Furthermore, immunofluorescence analysis in human MS brain tissue showed ANO2 expression as small cellular aggregates near and inside MS lesions. Thus this study represents one of the largest efforts to characterize the autoantibody repertoire within MS. The findings presented here demonstrate that an ANO2 autoimmune subphenotype may exist in MS and lay the groundwork for further studies focusing on the pathogenic role of ANO2 autoantibodies in MS.


Proteomics | 2013

Antibody‐based profiling of cerebrospinal fluid within multiple sclerosis

Anna Häggmark; Sanna Byström; Burcu Ayoglu; Ulrika Qundos; Mathias Uhlén; Mohsen Khademi; Tomas Olsson; Jochen M. Schwenk; Peter Nilsson

Antibody suspension bead arrays have proven to enable multiplexed and high‐throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad‐scale protein profiling of CSF within neurological disorders.


Journal of Proteome Research | 2017

Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy

Arash Zandian; Björn Forsström; Anna Häggmark-Månberg; Jochen M. Schwenk; Mathias Uhlén; Peter Nilsson; Burcu Ayoglu

The underlying molecular mechanisms of autoimmune diseases are poorly understood. To unravel the autoimmune processes across diseases, comprehensive and unbiased analyses of proteins targets recognized by the adaptive immune system are needed. Here we present an approach starting from high-density peptide arrays to characterize autoantibody repertoires and to identify new autoantigens. A set of ten plasma and serum samples from subjects with multiple sclerosis, narcolepsy, and without any disease diagnosis were profiled on a peptide array representing the whole proteome, hosting 2.2 million 12-mer peptides with a six amino acid lateral shift. On the basis of the IgG reactivities found on these whole-proteome peptide microarrays, a set of 23 samples was then studied on a targeted array with 174 000 12-mer peptides of single amino acid lateral shift. Finally, verification of IgG reactivities was conducted with a larger sample set (n = 448) using the bead-based peptide microarrays. The presented workflow employed three different peptide microarray formats to discover and resolve the epitopes of human autoantibodies and revealed two potentially new autoantigens: MAP3K7 in multiple sclerosis and NRXN1 in narcolepsy. The presented strategy provides insights into antibody repertoire reactivity at a peptide level and may accelerate the discovery and validation of autoantigens in human diseases.


New Biotechnology | 2016

Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling.

Ronald Sjöberg; Cecilia Mattsson; Eni Andersson; Cecilia Hellström; Mathias Uhlén; Jochen M. Schwenk; Burcu Ayoglu; Peter Nilsson

High-density protein microarrays of recombinant human protein fragments, representing 12,412 unique Ensembl Gene IDs, have here been produced and explored. These protein microarrays were used to analyse antibody off-target interactions, as well as for profiling the human autoantibody repertoire in plasma against the antigens represented by the protein fragments. Affinity-purified polyclonal antibodies produced within the Human Protein Atlas (HPA) were analysed on microarrays of three different sizes, ranging from 384 antigens to 21,120 antigens, for evaluation of the antibody validation criteria in the HPA. Plasma samples from secondary progressive multiple sclerosis patients were also screened in order to explore the feasibility of these arrays for broad-scale profiling of autoantibody reactivity. Furthermore, analysis on these near proteome-wide microarrays was complemented with analysis on HuProt™ Human Proteome protein microarrays. The HPA recombinant protein microarray with 21,120 antigens and the HuProt™ Human Proteome protein microarray are currently the largest protein microarray platforms available to date. The results on these arrays show that the Human Protein Atlas antibodies have few off-target interactions if the antibody validation criteria are kept stringent and demonstrate that the HPA-produced high-density recombinant protein fragment microarrays allow for a high-throughput analysis of plasma for identification of possible autoantibody targets in the context of various autoimmune conditions.


PLOS ONE | 2014

Bead arrays for antibody and complement profiling reveal joint contribution of antibody isotypes to C3 deposition.

Burcu Ayoglu; Eszter Szarka; Krisztina Huber; Anita Orosz; Fruzsina Babos; Anna Magyar; Ferenc Hudecz; Bernadette Rojkovich; Tamás Gáti; G Nagy; Jochen M. Schwenk; Gabriella Sármay; József Prechl; Peter Nilsson; Krisztián Papp

The development of antigen arrays has provided researchers with great tools to identify reactivities against self or foreign antigens from body fluids. Yet, these approaches mostly do not address antibody isotypes and their effector functions even though these are key points for a more detailed understanding of disease processes. Here, we present a bead array-based assay for a multiplexed determination of antigen-specific antibody levels in parallel with their properties for complement activation. We measured the deposition of C3 fragments from serum samples to reflect the degree of complement activation via all three complement activation pathways. We utilized the assay on a bead array containing native and citrullinated peptide antigens to investigate the levels of IgG, IgM and IgA autoantibodies along with their complement activating properties in serum samples of 41 rheumatoid arthritis patients and 40 controls. Our analysis revealed significantly higher IgG reactivity against the citrullinated fibrinogen β and filaggrin peptides as well as an IgA reactivity that was exclusive for citrullinated fibrinogen β peptide and C3 deposition in rheumatoid arthritis patients. In addition, we characterized the humoral immune response against the viral EBNA-1 antigen to demonstrate the applicability of this assay beyond autoimmune conditions. We observed that particular buffer compositions were demanded for separate measurement of antibody reactivity and complement activation, as detection of antigen-antibody complexes appeared to be masked due to C3 deposition. We also found that rheumatoid factors of IgM isotype altered C3 deposition and introduced false-positive reactivities against EBNA-1 antigen. In conclusion, the presented bead-based assay setup can be utilized to profile antibody reactivities and immune-complex induced complement activation in a high-throughput manner and could facilitate the understanding and diagnosis of several diseases where complement activation plays role in the pathomechanism.


Bioanalysis | 2016

Antigen arrays for profiling autoantibody repertoires

Burcu Ayoglu; Jochen M. Schwenk; Peter Nilsson

Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.

Collaboration


Dive into the Burcu Ayoglu's collaboration.

Top Co-Authors

Avatar

Jochen M. Schwenk

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Nilsson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mathias Uhlén

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Olsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Häggmark

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cecilia Hellström

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ronald Sjöberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frauke Henjes

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

F.J. Blanco

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge