Burkhard Fückel
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Burkhard Fückel.
Energy and Environmental Science | 2012
Yuen Yap Cheng; Burkhard Fückel; Rowan W. MacQueen; Tony Khoury; Raphaël G. C. R. Clady; Tim F. Schulze; N.J. Ekins-Daukes; Maxwell J. Crossley; Bernd Stannowski; Klaus Lips; Timothy W. Schmidt
Single-threshold solar cells are fundamentally limited by their ability to harvest only those photons above a certain energy. Harvesting below-threshold photons and re-radiating this energy at a shorter wavelength would thus boost the efficiency of such devices. We report an increase in light harvesting efficiency of a hydrogenated amorphous silicon (a-Si:H) thin-film solar cell due to a rear upconvertor based on sensitized triplet–triplet-annihilation in organic molecules. Low energy light in the range 600–750 nm is converted to 550–600 nm light due to the incoherent photochemical process. A peak efficiency enhancement of (1.0 ± 0.2)% at 720 nm is measured under irradiation equivalent to (48 ± 3) suns (AM1.5). We discuss the pathways to be explored in adapting photochemical UC for application in various single threshold devices.
Journal of Physical Chemistry Letters | 2013
Andrew Nattestad; Yuen Yap Cheng; Rowan W. MacQueen; Tim F. Schulze; Fletcher William Thompson; Attila J. Mozer; Burkhard Fückel; Tony Khoury; Maxwell J. Crossley; Klaus Lips; Gordon G. Wallace; Timothy W. Schmidt
Photon upconversion (UC) by triplet-triplet annihilation (TTA-UC) is employed in order to enhance the response of solar cells to sub-bandgap light. Here, we present the first report of an integrated photovoltaic device, combining a dye-sensitized solar cell (DSC) and TTA-UC system. The integrated device displays enhanced current under sub-bandgap illumination, resulting in a figure of merit (FoM) under low concentration (3 suns), which is competitive with the best values recorded to date for nonintegrated systems. Thus, we demonstrate both the compatibility of DSC and TTA-UC and a viable method for device integration.
Australian Journal of Chemistry | 2012
Tim F. Schulze; Yuen Yap Cheng; Burkhard Fückel; Rowan W. MacQueen; Andrew Danos; Nathaniel J. L. K. Davis; Murad J. Y. Tayebjee; Tony Khoury; Raphaël G. C. R. Clady; N.J. Ekins-Daukes; Maxwell J. Crossley; Bernd Stannowski; Klaus Lips; Timothy W. Schmidt
Photochemical upconversion is applied to a hydrogenated amorphous silicon solar cell in the presence of a back-scattering layer. A custom-synthesized porphyrin was utilized as the sensitizer species, with rubrene as the emitter. Under a bias of 24 suns, a peak external quantum efficiency (EQE) enhancement of ~2 % was observed at a wavelength of 720 nm. Without the scattering layer, the EQE enhancement was half this value, indicating that the effect of the back-scatterer is to double the efficacy of the upconverting device. The results represent an upconversion figure of merit of 3.5 × 10–4 mA cm–2 sun–2, which is the highest reported to date.
Journal of Physical Chemistry A | 2011
Yuen Yap Cheng; Burkhard Fückel; Tony Khoury; Raphaël G. C. R. Clady; N.J. Ekins-Daukes; Maxwell J. Crossley; Timothy W. Schmidt
Conventional photochemical upconversion (UC) through homo-geneous triplet-triplet annihilation (TTA) is subject to several enthalpic losses that limit the UC margin. Here, we address one of these losses: the triplet energy transfer (TET) from the sensitizer to the emitter molecules. Usually, the triplet energy level of the emitter is set below that of the sensitizer. In our system, the triplet energy level of the emitter exceeds that of the sensitizer by ∼600 cm(-1). Choosing suitable concentrations for the sensitizer and emitter molecules, we can exploit entropy as a driving force for the migration of triplet excitation from the sensitizer to the emitter manifolds. Thereby we obtain a new record for the peak-to-peak TTA-UC energy margin of 0.94 eV. A modified Stern-Volmer analysis yields a TET rate constant of 2.0 × 10(7) M(-1) s(-1). Despite being relatively inefficient, the upconverted fluorescence is easily visible to the naked eye with irradiation intensities as low as 2 W cm(-2).
Journal of the American Chemical Society | 2011
Gerard D. O’Connor; Tyler P. Troy; Derrick A. Roberts; Nahid Chalyavi; Burkhard Fückel; Maxwell J. Crossley; Klaas Nauta; John F. Stanton; Timothy W. Schmidt
After benzene and naphthalene, the smallest polycyclic aromatic hydrocarbon bearing six-membered rings is the threefold-symmetric phenalenyl radical. Despite the fact that it is so fundamental, its electronic spectroscopy has not been rigorously scrutinized, in spite of growing interest in graphene fragments for molecular electronic applications. Here we used complementary laser spectroscopic techniques to probe the jet-cooled phenalenyl radical in vacuo. Its spectrum reveals the interplay between four electronic states that exhibit Jahn-Teller and pseudo-Jahn-Teller vibronic coupling. The coupling mechanism has been elucidated by the application of various ab initio quantum-chemical techniques.
Chemical Science | 2011
Tyler P. Troy; Nahid Chalyavi; Ambili S. Menon; Gerard D. O'Connor; Burkhard Fückel; Klaas Nauta; Leo Radom; Timothy W. Schmidt
The resonant two-color two-photon ionization and laser induced fluorescence excitation spectra of the 1-phenylallyl (cinnamyl) and inden-2-ylmethyl radicals are reported. The 1-phenylallyl radical is found to fluoresce with low yield, permitting only a coarse dispersed fluorescence spectrum, while the inden-2-ylmethyl radical yields sufficient fluorescence to obtain ground-state vibrational frequencies and two-dimensional fluorescence spectra. Computed ionization energies and thermochemical properties including radical stabilization energies are reported for a range of resonance-stabilized radicals, including the phenylpropargyl, vinylpropargyl and phenylallyl radicals.
Journal of Physical Chemistry A | 2012
Derrick A. Roberts; Burkhard Fückel; Raphael̈ G. C. R. Clady; Yuen Yap Cheng; Maxwell J. Crossley; Timothy W. Schmidt
We report the synthesis and ultrafast excited-state dynamics of two new meso-meso, β-β, β-β triply fused diporphyrins, Zn-3DP and Pd-3DP. Both compounds were found to have short excited-state lifetimes: Zn-3DP possessed an average S1 lifetime of 14 ps before nonradiative deactivation to the ground state, whereas Pd-3DP displayed a longer average S1 lifetime of 18 ps before crossing to the T1 state, which itself possessed a very short triplet lifetime of 1.7 ns. The excited-state dynamics of Zn-3DP, compared to similar zinc(II) diporphyrins reported in the literature, suggests that a conical intersection of the S1 and S0 potential energy surfaces plays a major role as a deactivation pathway of these molecules. Furthermore, the short triplet lifetime of Pd-3DP, compared to other diporphyrins that also exploit the intramolecular heavy atom effect, reveals that the position of the heavy atom within the diporphyrin framework influences the strength of spin-orbit coupling. The implications for employing triply fused diporphyrins as NIR-absorbing triplet sensitizers are discussed.
Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion | 2010
Yuen Yap Cheng; Burkhard Fückel; Derrick A. Roberts; Tony Khoury; Raphaël G. C. R. Clady; Murad J. Y. Tayebjee; Roland Piper; N.J. Ekins-Daukes; Maxwell J. Crossley; Timothy W. Schmidt
We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ≈60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ≈3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.
photovoltaic specialists conference | 2011
Roland Piper; Megumi Yoshida; Nicholas J. Ekins-Daukes; Saif A. Haque; Yuen Yap Cheng; Burkhard Fückel; Tony Khoury; Raphaël G. C. R. Clady; Murad J. Y. Tayebjee; Maxwell J. Crossley; Timothy W. Schmidt
Upconversion is a promising technique for significantly enhancing the efficiency of photovoltaic cells. Molecular systems provide an environment in which long lived triplet states can be exploited to achieve high upconversion efficiencies under solar illumination. We report on the investigation of bi-molecular triplet-triplet annihilation upconversion (TTA-UC) in a Palladium (II) tetrakisquinoxalino porphyrin (PQ4Pd)/rubrene solution. These molecules were studied in solution using UV/VIS spectroscopy to determine their stability in air over a period of weeks. Transient absorption spectroscopy (TAS) was used to directly measure the lifetime of triplet states within these mixtures and hence determine the photoinduced kinetics of the system. The lifetime of porphyrin triplets was reduced from 92.4 μs in pristine PQ4Pd to 2.4 μs in the presence of rubrene. From this change, the rate constant associated with triplet energy transfer (kTET) was calculated as 3.38 × 108M−1s−1. Additionally, a reduction in the absorption of 530 nm light (the ground state rubrene absorption peak) was observed, while the mixture was pumped at the absorption peak of the porphyrin (670 nm). This change became apparent nearly 6 μs after the laser pulse, showing energy transfer from the porphyrin to the rubrene, and allowing further insight into the kinetics of the mechanism.
Archive | 2016
Yuen Yap Cheng; Andrew Nattestad; Tim F. Schulze; Rowan W. MacQueen; Burkhard Fückel; Klaus Lips; Gordon G. Wallace; Tony Khoury; Maxwell J. Crossley; Timothy W. Schmidt
A dual-emitter upconvertor is applied to thin-film solar cells for the first time, generating record figures of merit.