Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Burkhard Pleger is active.

Publication


Featured researches published by Burkhard Pleger.


PLOS ONE | 2010

Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain

Gabriele Lohmann; Daniel S. Margulies; Annette Horstmann; Burkhard Pleger; Joeran Lepsien; Dirk Goldhahn; Haiko Schloegl; Michael Stumvoll; Arno Villringer; Robert Turner

Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Googles PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular “betweenness centrality” - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.


Annals of Neurology | 2005

Sensorimotor returning in complex regional pain syndrome parallels pain reduction

Burkhard Pleger; Martin Tegenthoff; Patrick Ragert; Ann-Freya Förster; Hubert R. Dinse; Peter Schwenkreis; Volkmar Nicolas; Christoph Maier

Patients with complex regional pain syndrome (CRPS) and intractable pain showed a shrinkage of cortical maps on primary (SI) and secondary somatosensory cortex (SII) contralateral to the affected limb. This was paralleled by an impairment of the two‐point discrimination thresholds. Behavioral treatment over 1 to 6 months consisting of graded sensorimotor retuning led to a persistent decrease in pain intensity, which was accompanied by a restoration of the impaired tactile discrimination and regaining of cortical map size in contralateral SI and SII. This suggests that the reversal of tactile impairment and cortical reorganization in CRPS is associated with a decrease in pain. Ann Neurol 2005;57:425–429


NeuroImage | 2006

Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome.

Burkhard Pleger; Patrick Ragert; Peter Schwenkreis; Ann-Freya Förster; Claudia Wilimzig; Hubert R. Dinse; Volkmar Nicolas; Christoph Maier; Martin Tegenthoff

In the complex regional pain syndrome (CRPS), several theories proposed the existence of pathophysiological mechanisms of central origin. Recent studies highlighted a smaller representation of the CRPS-affected hand on the primary somatosensory cortex (SI) during non-painful stimulation of the affected side. We addressed the question whether reorganizational changes can also be found in the secondary somatosensory cortex (SII). Moreover, we investigated whether cortical changes might be accompanied by perceptual changes within associated skin territories. Seventeen patients with CRPS of one upper limb without the presence of peripheral nerve injuries (type I) were subjected to functional magnetic resonance imaging (fMRI) during electrical stimulation of both index fingers (IFs) in order to assess hemodynamic signals of the IF representation in SI and SII. As a marker of tactile perception, we tested 2-point discrimination thresholds on the tip of both IFs. Cortical signals within SI and SII were significantly reduced contralateral to the CRPS-affected IF as compared to the ipsilateral side and to the representation of age- and sex-matched healthy controls. In parallel, discrimination thresholds of the CRPS-affected IF were significantly higher, giving rise to an impairment of tactile perception within the corresponding skin territory. Mean sustained, but not current pain levels were correlated with the amount of sensory impairment and the reduction in signal strength. We conclude that patterns of cortical reorganization in SI and SII seem to parallel impaired tactile discrimination. Furthermore, the amount of reorganization and tactile impairment appeared to be linked to characteristics of CRPS pain.


Neuron | 2003

Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex

Burkhard Pleger; Ann-Freya Foerster; Patrick Ragert; Hubert R. Dinse; Peter Schwenkreis; Jean-Pierre Malin; Volkmar Nicolas; Martin Tegenthoff

Cellular mechanisms underlying synaptic plasticity are in line with the Hebbian concept. In contrast, data linking Hebbian learning to altered perception are rare. Combining functional magnetic resonance imaging with psychophysical tests, we studied cortical reorganization in primary and secondary somatosensory cortex (SI and SII) and the resulting changes of tactile perception before and after tactile coactivation, a simple type of Hebbian learning. Coactivation on the right index finger (IF) for 3 hr lowered its spatial discrimination threshold. In parallel, blood-oxygen level-dependent (BOLD) signals from the right IF representation in SI and SII enlarged. The individual threshold reduction was linearly correlated with the enlargement in SI, implying a close relation between altered discrimination and cortical reorganization. Controls consisting of a single-site stimulation did not affect thresholds and cortical maps. Accordingly, changes within distributed cortical networks based on Hebbian mechanisms alter the individual percept.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Shifts in cortical representations predict human discrimination improvement

Burkhard Pleger; Hubert R. Dinse; Patrick Ragert; Peter Schwenkreis; Jean Pierre Malin; Martin Tegenthoff

We report experiments combining assessment of spatial tactile discrimination behavior and measurements of somatosensory-evoked potentials in human subjects before and after short-term plastic changes to demonstrate a causal link between the degree of altered performance and reorganization. Plastic changes were induced by a Hebbian coactivation protocol of simultaneous pairing of tactile stimuli. As a result of coactivation, spatial discrimination thresholds were lowered; however, the amount of discrimination improvement was variable across subjects. Analysis of somatosensory-evoked potentials revealed a significant, but also variable shift in the localization of the N20-dipole of the index finger that was coactivated. The Euclidean distance between the dipole pre- and post-coactivation was significantly larger on the coactivated side (mean 9.13 ± 3.4 mm) than on the control side (mean 4.90 ± 2.7 mm, P = 0.008). Changes of polar angles indicated a lateral and inferior shift on the postcentral gyrus of the left hemisphere representing the coactivated index finger. To explore how far the variability of improvement was reflected in the degree of reorganization, we correlated the perceptual changes with the N20-dipole shifts. We found that the changes in discrimination abilities could be predicted from the changes in dipole localization. Little gain in spatial discrimination was associated with small changes in dipole shifts. In contrast, subjects who showed a large cortical reorganization also had lowest thresholds. All changes were highly selective as no transfer to the index finger of the opposite, non-coactivated hand was found. Our results indicate that human spatial discrimination performance is subject to improvement on a short time scale by a Hebbian stimulation protocol without invoking training, attention, or reinforcement. Plastic processes related to the improvement were localized in primary somatosensory cortex and were scaled with the degree of the individual perceptual improvement.


PLOS Biology | 2005

Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS.

Martin Tegenthoff; Patrick Ragert; Burkhard Pleger; Peter Schwenkreis; Ann-Freya Förster; Volker Nicolas; Hubert R. Dinse

Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to investigate mechanisms of brain functions and plasticity, but also as a promising new therapeutic tool. The effects of rTMS depend on the intensity and frequency of stimulation and consist of changes of cortical excitability, which often persists several minutes after termination of rTMS. While these findings imply that cortical processing can be altered by applying current pulses from outside the brain, little is known about how rTMS persistently affects learning and perception. Here we demonstrate in humans, through a combination of psychophysical assessment of two-point discrimination thresholds and functional magnetic resonance imaging (fMRI), that brief periods of 5 Hz rTMS evoke lasting perceptual and cortical changes. rTMS was applied over the cortical representation of the right index finger of primary somatosensory cortex, resulting in a lowering of discrimination thresholds of the right index finger. fMRI revealed an enlargement of the right index finger representation in primary somatosensory cortex that was linearly correlated with the individual rTMS-induced perceptual improvement indicative of a close link between cortical and perceptual changes. The results demonstrate that repetitive, unattended stimulation from outside the brain, combined with a lack of behavioral information, are effective in driving persistent improvement of the perception of touch. The underlying properties and processes that allow cortical networks, after being modified through TMS pulses, to reach new organized stable states that mediate better performance remain to be clarified.


Neuroscience Letters | 2004

Repetitive transcranial magnetic stimulation of the motor cortex attenuates pain perception in complex regional pain syndrome type I

Burkhard Pleger; Frank Janssen; Peter Schwenkreis; Birgit Völker; Christoph Maier; Martin Tegenthoff

In complex regional pain syndrome (CRPS) many clinical symptoms suggest involvement of the central nervous system. Neuropathic pain as the leading symptom is often resistant to therapy. In the present study we investigated the analgesic efficiency of repetitive transcranial magnetic simulation (rTMS) applied to the motor cortex contralateral to the CRPS-affected side. Seven out of ten patients reported decreased pain intensities. Pain relief occurred 30 s after stimulation, whereas the maximum effect was found 15 min later. Pain re-intensified increasingly 45 min after rTMS. In contrast, sham rTMS did not alter pain perception. These findings provide evidence that in CRPS I pain perception can be modulated by repetitive motor cortex stimulation.


Annals of Neurology | 2005

Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction.

Burkhard Pleger; Martin Tegenthoff; Patrick Ragert; Ann-Freya Förster; Hubert R. Dinse; Peter Schwenkreis; Nicolas; Christoph Maier

Patients with complex regional pain syndrome (CRPS) and intractable pain showed a shrinkage of cortical maps on primary (SI) and secondary somatosensory cortex (SII) contralateral to the affected limb. This was paralleled by an impairment of the two‐point discrimination thresholds. Behavioral treatment over 1 to 6 months consisting of graded sensorimotor retuning led to a persistent decrease in pain intensity, which was accompanied by a restoration of the impaired tactile discrimination and regaining of cortical map size in contralateral SI and SII. This suggests that the reversal of tactile impairment and cortical reorganization in CRPS is associated with a decrease in pain. Ann Neurol 2005;57:425–429


Frontiers in Human Neuroscience | 2011

Obesity-Related Differences between Women and Men in Brain Structure and Goal-Directed Behavior

Annette Horstmann; Franziska P. Busse; David Mathar; Jöran Lepsien; Haiko Schlögl; Stefan Kabisch; Jürgen Kratzsch; Jane Neumann; Michael Stumvoll; Arno Villringer; Burkhard Pleger

Gender differences in the regulation of body-weight are well documented. Here, we assessed obesity-related influences of gender on brain structure as well as performance in the Iowa Gambling Task. This task requires evaluation of both immediate rewards and long-term outcomes and thus mirrors the trade-off between immediate reward from eating and the long-term effect of overeating on body-weight. In women, but not in men, we show that the preference for salient immediate rewards in the face of negative long-term consequences is higher in obese than in lean subjects. In addition, we report structural differences in the left dorsal striatum (i.e., putamen) and right dorsolateral prefrontal cortex for women only. Functionally, both regions are known to play complimentary roles in habitual and goal-directed control of behavior in motivational contexts. For women as well as men, gray matter volume correlates positively with measures of obesity in regions coding the value and saliency of food (i.e., nucleus accumbens, orbitofrontal cortex) as well as in the hypothalamus (i.e., the brains central homeostatic center). These differences between lean and obese subjects in hedonic and homeostatic control systems may reflect a bias in eating behavior toward energy-intake exceeding the actual homeostatic demand. Although we cannot infer from our results the etiology of the observed structural differences, our results resemble neural and behavioral differences well known from other forms of addiction, however, with marked differences between women and men. These findings are important for designing gender-appropriate treatments of obesity and possibly its recognition as a form of addiction.


PLOS ONE | 2011

Sex-Dependent Influences of Obesity on Cerebral White Matter Investigated by Diffusion-Tensor Imaging

Karsten Mueller; Harald E. Möller; Annette Horstmann; Joeran Lepsien; Franziska P. Busse; Siawoosh Mohammadi; Matthias L. Schroeter; Michael Stumvoll; Arno Villringer; Burkhard Pleger

Several studies have shown that obesity is associated with changes in human brain function and structure. Since women are more susceptible to obesity than men, it seems plausible that neural correlates may also be different. However, this has not been demonstrated so far. To address this issue, we systematically investigated the brains white matter (WM) structure in 23 lean to obese women (mean age 25.5 y, std 5.1 y; mean body mass index (BMI) 29.5 kg/m2, std 7.3 kg/m2) and 26 lean to obese men (mean age 27.1 y, std 5.0 y; mean BMI 28.8 kg/m2, std 6.8 kg/m2) with diffusion-weighted magnetic resonance imaging (MRI). There was no significant age (p>0.2) or BMI (p>0.7) difference between female and male participants. Using tract-based spatial statistics, we correlated several diffusion parameters including the apparent diffusion coefficient, fractional anisotropy (FA), as well as axial (λ∥) and radial diffusivity (λ⊥) with BMI and serum leptin levels. In female and male subjects, the putative axon marker λ∥ was consistently reduced throughout the corpus callosum, particularly in the splenium (r = −0.62, p<0.005). This suggests that obesity may be associated with axonal degeneration. Only in women, the putative myelin marker λ⊥ significantly increased with increasing BMI (r = 0.57, p<0.005) and serum leptin levels (r = 0.62, p<0.005) predominantly in the genu of the corpus callosum, suggesting additional myelin degeneration. Comparable structural changes were reported for the aging brain, which may point to accelerated aging of WM structure in obese subjects. In conclusion, we demonstrate structural WM changes related to an elevated body weight, but with differences between men and women. Future studies on obesity-related functional and structural brain changes should therefore account for sex-related differences.

Collaboration


Dive into the Burkhard Pleger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge