Burton H. Bluhm
University of Arkansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Burton H. Bluhm.
Nature | 2010
Li-Jun Ma; H. Charlotte van der Does; Katherine A. Borkovich; Jeffrey J. Coleman; Marie Josée Daboussi; Antonio Di Pietro; Marie Dufresne; Michael Freitag; Manfred Grabherr; Bernard Henrissat; Petra M. Houterman; Seogchan Kang; Won Bo Shim; Charles P. Woloshuk; Xiaohui Xie; Jin-Rong Xu; John Antoniw; Scott E. Baker; Burton H. Bluhm; Andrew Breakspear; Daren W. Brown; Robert A. E. Butchko; Sinéad B. Chapman; Richard M. R. Coulson; Pedro M. Coutinho; Etienne Danchin; Andrew C. Diener; Liane R. Gale; Donald M. Gardiner; Stephen A. Goff
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
The Plant Cell | 2006
Paola Veronese; Hirofumi Nakagami; Burton H. Bluhm; Synan AbuQamar; Xi Chen; John Salmeron; Robert A. Dietrich; Heribert Hirt; Tesfaye Mengiste
Plant resistance to disease is controlled by the combination of defense response pathways that are activated depending on the nature of the pathogen. We identified the Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) gene that is transcriptionally regulated by Botrytis cinerea infection. Inactivation of BIK1 causes severe susceptibility to necrotrophic fungal pathogens but enhances resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. The response to an avirulent bacterial strain is unchanged, limiting the role of BIK1 to basal defense rather than race-specific resistance. The jasmonate- and ethylene-regulated defense response, generally associated with resistance to necrotrophic fungi, is attenuated in the bik1 mutant based on the expression of the plant defensin PDF1.2 gene. bik1 mutants show altered root growth, producing more and longer root hairs, demonstrating that BIK1 is also required for normal plant growth and development. Whereas the pathogen responses of bik1 are mostly dependent on salicylic acid (SA) levels, the nondefense responses are independent of SA. BIK1 is membrane-localized, suggesting possible involvement in early stages of the recognition or transduction of pathogen response. Our data suggest that BIK1 modulates the signaling of cellular factors required for defense responses to pathogen infection and normal root hair growth, linking defense response regulation with that of growth and development.
Applied and Environmental Microbiology | 2003
Joseph E. Flaherty; Anna Maria Pirttilä; Burton H. Bluhm; Charles P. Woloshuk
ABSTRACT Fumonisins are a group of mycotoxins that contaminate maize and cause leukoencephalomalacia in equine, pulmonary edema in swine, and promote cancer in mice. Fumonisin biosynthesis in Fusarium verticillioides is repressed by nitrogen and alkaline pH. We cloned a PACC-like gene (PAC1) from F. verticillioides. PACC genes encode the major transcriptional regulators of several pH-responsive pathways in other filamentous fungi. In Northern blot analyses, a PAC1 probe hybridized to a 2.2-kb transcript present in F. verticillioides grown at alkaline pH. A mutant of F. verticillioides with a disrupted PAC1 gene had severely impaired growth at alkaline pH. The mutant produced more fumonisin than the wild type when grown on maize kernels and in a synthetic medium buffered at an acidic pH, 4.5. The mutant, but not the wild type, also produced fumonisin B1 when mycelia were resuspended in medium buffered at an alkaline pH, 8.4. Transcription of FUM1, a gene involved in fumonisin biosynthesis, was correlated with fumonisin production. We conclude that PAC1 is required for growth at alkaline pH and that Pac1 may have a role as a repressor of fumonisin biosynthesis under alkaline conditions.
Journal of Food Protection | 2002
Burton H. Bluhm; Joseph E. Flaherty; Cousin Ma; Charles P. Woloshuk
The genus Fusarium comprises a diverse group of fungi including several species that produce mycotoxins in food commodities. In this study, a multiplex polymerase chain reaction (PCR) assay was developed for the group-specific detection of fumonisin-producing and trichothecene-producing species of Fusarium. Primers for genus-level recognition of Fusarium spp. were designed from the internal transcribed spacer regions (ITS1 and ITS2) of rDNA. Primers for group-specific detection were designed from the TRI6 gene involved in trichothecene biosynthesis and the FUM5 gene involved in fumonisin biosynthesis. Primer specificity was determined by testing for cross-reactivity against purified genomic DNA from 43 fungal species representing 14 genera, including 9 Aspergillus spp., 9 Fusarium spp., and 10 Penicillium spp. With purified genomic DNA as a template, genus-specific recognition was observed at 10 pg per reaction; group-specific recognition occurred at 100 pg of template per reaction for the trichothecene producer Fusarium graminearum and at 1 ng of template per reaction for the fumonisin producer Fusarium verticillioides. For the application of the PCR assay, a protocol was developed to isolate fungal DNA from cornmeal. The detection of F. graminearum and its differentiation from F. verticillioides were accomplished prior to visible fungal growth at <10(5) CFU/g of cornmeal. This level of detection is comparable to those of other methods such as enzyme-linked immunosorbent assay, and the assay described here can be used in the food industrys effort to monitor quality and safety.
Molecular Plant-microbe Interactions | 2007
Burton H. Bluhm; X. Zhao; Joseph E. Flaherty; J.-R. Xu; Larry D. Dunkle
Fusarium graminearum is a ubiquitous pathogen of cereal crops, including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains frequently are contaminated with harmful mycotoxins such as deoxynivalenol (DON). In this study, we explored the role of Ras GTPases in pathogenesis. The genome of F. graminearum contains two putative Ras GTPase-encoding genes. The two genes (RAS1 and RAS2) showed different patterns of expression under different conditions of nutrient availability and in various mutant backgrounds. RAS2 was dispensable for survival but, when disrupted, caused a variety of morphological defects, including slower growth on solid media, delayed spore germination, and significant reductions in virulence on wheat heads and maize silks. Intracellular cAMP levels were not affected by deletion of RAS2 and exogenous treatment of the ras2 mutant with cAMP did not affect phenotypic abnormalities, thus indicating that RAS2 plays a minor or no role in cAMP signaling. However, phosphorylation of the mitogen-activated protein (MAP) kinase Gpmk1 and expression of a secreted lipase (FGL1) required for infection were reduced significantly in the ras2 mutant. Based on these observations, we hypothesize that RAS2 regulates growth and virulence in F. graminearum by regulating the Gpmk1 MAP kinase pathway.
Fungal Genetics and Biology | 2008
Burton H. Bluhm; Larry D. Dunkle
DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.
Journal of Applied Microbiology | 2011
P. Horevaj; E.A. Milus; Burton H. Bluhm
Aims: To develop a real‐time PCR assay to quantify Fusarium graminearum biomass in blighted wheat kernels.
PLOS ONE | 2014
Subodh K. Srivastava; Xiaoqiu Huang; Hargeet K. Brar; Ahmad M. Fakhoury; Burton H. Bluhm; Madan K. Bhattacharyya
Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease. Methodology/Principal Findings We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes. Conclusions The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean.
BMC Genomics | 2014
Jonathon E. Smith; Bemnet Mengesha; Hua Tang; Tesfaye Mengiste; Burton H. Bluhm
BackgroundTomato (Solanum lycopersicum), one of the world’s most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea.ResultsAmong eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites.ConclusionsIn sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.
PLOS Pathogens | 2011
Hun Kim; John B. Ridenour; Larry D. Dunkle; Burton H. Bluhm
Cercospora zeae-maydis causes gray leaf spot of maize, which has become one of the most widespread and destructive diseases of maize in the world. C. zeae-maydis infects leaves through stomata, which is predicated on the ability of the pathogen to perceive stomata and reorient growth accordingly. In this study, the discovery that light was required for C. zeae-maydis to perceive stomata and infect leaves led to the identification of CRP1, a gene encoding a putative blue-light photoreceptor homologous to White Collar-1 (WC-1) of Neurospora crassa. Disrupting CRP1 via homologous recombination revealed roles in multiple aspects of pathogenesis, including tropism of hyphae to stomata, the formation of appressoria, conidiation, and the biosynthesis of cercosporin. CRP1 was also required for photoreactivation after lethal doses of UV exposure. Intriguingly, putative orthologs of CRP1 are central regulators of circadian clocks in other filamentous fungi, raising the possibility that C. zeae-maydis uses light as a key environmental input to coordinate pathogenesis with maize photoperiodic responses. This study identified a novel molecular mechanism underlying stomatal tropism in a foliar fungal pathogen, provides specific insight into how light regulates pathogenesis in C. zeae-maydis, and establishes a genetic framework for the molecular dissection of infection via stomata and the integration of host and pathogen responses to photoperiod.