Byeong-Gweon Lee
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Byeong-Gweon Lee.
Journal of Marine Research | 2002
Sarah B. Griscom; Nicholas S. Fisher; Robert C. Aller; Byeong-Gweon Lee
Bioavailability and uptake of trace metals by benthic animals are often assumed to be limited by authigenic sulfide minerals because of their low metal solubilities and reactivities under sedimentary conditions. However, digestive processes and gut conditions such as Eh, pH, and enzyme or surfactant activity, can affect the release of ingested metals in the gut and control uptake. In a series of laboratory experiments with the deposit-feeding clam, Macoma balthica and the suspension-feeding mussel, Mytilus edulis, we assessed assimilation efficiencies (AE) of radioisotopes of Ag, Cd and Co associated with acid-volatile sulfide (AVS), iron oxide (re-oxidized AVS), and reduced and oxidized natural sediment. To evaluate controls on AE, we measured the gut passage time (GPT) of ingested particles, gut Eh, pH, and extraction of Ag, Cd, and Co from particles into gut juice. In general, the overall trends of AEs and metal extraction were Co > Cd ≥ Ag. AEs, metal extraction, and GPTs were higher in M. balthica than in M. edulis in most cases. M. balthica tended overall to take up metals more readily from oxidized than reduced natural sediment, whereas M. edulis did the opposite for Co and Cd. AEs of metals in reoxidized AVS (Fe-oxides) were generally similar to oxic sediment (Ag being the exception for M. edulis). In M. balthica, there was no significant difference in AEs from AVS and Fe-oxide particles for Cd (14-20%) or Co (27-35%), but AEs for Ag from AVS particles were greater in large clams (28%) than small clams (15%). There were generally poor correlations between AEs of metals and metal release in gut juice. Low pH and moderate reducing conditions facilitated dissolution of AVS- and iron oxide-bound metal in the guts of both animals. The GPTs (64 h) for Co associated with AVS particles in M. edulis were an order of magnitude greater than for Ag and Cd, or for Co associated with other particle types. Overall, no single mechanism appears to control metal AE in marine bivalves and in vitro studies of metal dissolution in gut juice do not completely mimic the complex digestive processes operating in vivo, and thus cannot fully explain metal assimilation in these animals.
Environmental Toxicology and Chemistry | 2004
Jung-Suk Lee; Byeong-Gweon Lee; Samuel N. Luoma; Hoon Yoo
The influences of spiked Zn concentrations (1-40 micromol/g) and equilibration time (approximately 95 d) on the partitioning of Zn between pore water (PW) and sediment were evaluated with estuarine sediments containing two levels (5 and 15 micromol/g) of acid volatile sulfides (AVS). Their influence on Zn bioavailability was also evaluated by a parallel, 10-d amphipod (Leptocheirus plumulosus) mortality test at 5, 20, and 85 d of equilibration. During the equilibration, AVS increased (up to twofold) with spiked Zn concentration ([Zn]), whereas Zn-simultaneously extracted metals ([SEM]; Zn with AVS) remained relatively constant. Concentrations of Zn in PW decreased most rapidly during the initial 30 d and by 11- to 23-fold during the whole 95-d equilibration period. The apparent partitioning coefficient (Kpw, ratio of [Zn] in SEM to PW) increased by 10- to 20-fold with time and decreased with spiked [Zn] in sediments. The decrease of PW [Zn] could be explained by a combination of changes in AVS and redistribution of Zn into more insoluble phases as the sediment aged. Amphipod mortality decreased significantly with the equilibration time, consistent with decrease in dissolved [Zn]. The median lethal concentration (LC50) value (33 microM) in the second bioassay, conducted after 20 d of equilibration, was twofold the LC50 in the initial bioassay at 5 d of equilibration, probably because of the change of dissolved Zn speciation. Sediment bioassay protocols employing a short equilibration time and high spiked metal concentrations could accentuate partitioning of metals to the dissolved phase and shift the pathway for metal exposure toward the dissolved phase.
Algae | 2005
Tae Seob Choi; Kwang Young Kim; Byeong-Gweon Lee; Jung-Suk Lee
Uptake kinetics of Cd and Zn by leaves and rhizome of the seagrass Zostera marina were examined in controlled laboratory radiotracer experiments. Subsequently, acute toxicity of Cd, Cu and TBT on photosynthetic quantum yield (ΔF/Fm’ of Z. marina were determined, and the differential sensitivities of rapid light curve (RLC) to those harmful substances were also compared. All measurements on photosynthetic activity were determined by chlorophyll a fluorescence method using pulse amplitude modulation (PAM). Metal uptake by Z. marina was saturated with increasing exposure time in leaves and rhizomes. Uptake of Zn by Z. marina was faster than that of Cd. Metal uptake rates in Z. marina decreased with the increase of dissolved metal concentrations and also with the increase of biomass. The adverse effect of TBT on effective quantum yield was stronger than other pollutants. Average acute toxicity on the RLC of the seagrass exposed to TBT and two heavy metals (Cd and Cu) was going to decrease as follows: TBT > Cd > Cu. Our preliminary results in this study suggested that Z. marina potentially can be used as a biomonitor of harmful substances contamination in coastal waters.
Marine Ecology Progress Series | 2003
William G. Wallace; Byeong-Gweon Lee; Samuel N. Luoma
Science | 2000
Byeong-Gweon Lee; Sarah B. Griscom; Jung-Suk Lee; Heesun J. Choi; Chul-Hwan Koh; Samuel N. Luoma; Nicholas S. Fisher
Limnology and Oceanography | 1998
Samuel N. Luoma; Alexander van Geen; Byeong-Gweon Lee; James E. Cloern
Marine Ecology Progress Series | 1998
Byeong-Gweon Lee; William G. Wallace; Samuel N. Luoma
Environmental Science & Technology | 2000
Byeong-Gweon Lee; Jung-Suk Lee; Samuel N. Luoma; Heeseon Jeon Choi; Chul-Hwan Koh
Limnology and Oceanography | 1998
Byeong-Gweon Lee; Samuel N. Louma
Limnology and Oceanography | 1996
Wen-Xiong Wang; John R. Reinfelder; Byeong-Gweon Lee; Nicholas S. Fisher