Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byeong Jo Kim is active.

Publication


Featured researches published by Byeong Jo Kim.


Energy and Environmental Science | 2015

Highly efficient and bending durable perovskite solar cells: toward a wearable power source

Byeong Jo Kim; Dong Hoe Kim; Yoo-Yong Lee; Hee-Won Shin; Gill Sang Han; Jung Sug Hong; Khalid Mahmood; Tae Kyu Ahn; Young-Chang Joo; Kug Sun Hong; Nam-Gyu Park; Sangwook Lee; Hyun Suk Jung

Perovskite solar cells are promising candidates for realizing an efficient, flexible, and lightweight energy supply system for wearable electronic devices. For flexible perovskite solar cells, achieving high power conversion efficiency (PCE) while using a low-temperature technology for the fabrication of a compact charge collection layer is a critical issue. Herein, we report on a flexible perovskite solar cell exhibiting 12.2% PCE as a result of the employment of an annealing-free, 20 nm thick, amorphous, compact TiOx layer deposited by atomic layer deposition. The excellent performance of the cell was attributed to fast electron transport, verified by time-resolved photoluminescence and impedance studies. The PCE remained the same down to 0.4 sun illumination, as well as to a 45° tilt to incident light. Mechanical bending of the devices worsened device performance by only 7% when a bending radius of 1 mm was used. The devices maintained 95% of the initial PCE after 1000 bending cycles for a bending radius of 10 mm. Degradation of the device performance by the bending was the result of crack formation from the transparent conducting oxide layer, demonstrating the potential of the low-temperature-processed TiOx layer to achieve more efficient and bendable perovskite solar cells, which becomes closer to a practical wearable power source.


Journal of Physical Chemistry Letters | 2015

Ferroelectric Polarization in CH3NH3PbI3 Perovskite

Hui-Seon Kim; Sung Kyun Kim; Byeong Jo Kim; Kyung-Sik Shin; Manoj Kumar Gupta; Hyun Suk Jung; Sang-Woo Kim; Nam-Gyu Park

We report on ferroelectric polarization behavior in CH3NH3PbI3 perovskite in the dark and under illumination. Perovskite crystals with three different sizes of 700, 400, and 100 nm were prepared for piezoresponse force microscopy (PFM) measurements. PFM results confirmed the formation of spontaneous polarization in CH3NH3PbI3 in the absence of electric field, where the size dependency to polarization was not significant. Whereas the photoinduced stimulation was not significant without an external electric field, the stimulated polarization by poling was further enhanced under illumination. The retention of ferroelectric polarization was also observed after removal of the electric field, in which larger crystals showed longer retention behavior compared to the smaller sized one. Additionally, we suggest the effect of perovskite crystal size (morphology) on charge collection at the interface of the ferroelectric material even though insignificant size dependency in electric polarization was observed.


Journal of Materials Chemistry | 2015

Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films

Gill Sang Han; Hyun Suk Chung; Byeong Jo Kim; Dong Hoe Kim; Jin Wook Lee; Bhabani Sankar Swain; Khalid Mahmood; Jin Sun Yoo; Nam-Gyu Park; Jung Heon Lee; Hyun Suk Jung

MgO-coated TiO2 nanoparticle (NP)-based electron collecting layers were fabricated to prevent charge recombination at the methylamine lead iodide/TiO2 interface in perovskite solar cells. The open circuit voltage (Voc) and fill factor (ff) of perovskite solar cells based on MgO-coated TiO2 charge collectors were 0.89 V and 71.2%, respectively. These values were 4.7% and 6.1% higher than the pure TiO2 based perovskite solar cells. Transient photovoltage decay data exhibited recombination times for MgO-coated TiO2 NP-based perovskite solar cells about three times longer than those of TiO2 NP based solar cells. The longer recombination time was responsible for enhancing the Voc and ff of MgO-coated TiO2 NP-based perovskite solar cells. By employing a MgO nanolayer, we observed that the power conversion efficiency (PCE) was increased from 11.4% to 12.7%, demonstrating that MgO ultrathin nanolayers are able to efficiently retard charge recombination in perovskite solar cells.


Chemsuschem | 2015

Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.

Dong Hoe Kim; Gill Sang Han; Won Mo Seong; Jin-Wook Lee; Byeong Jo Kim; Nam Gyu Park; Kug Sun Hong; Sangwook Lee; Hyun Suk Jung

Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies.


Nano Letters | 2016

Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials

Mincheol Kim; Byeong Jo Kim; Dae-Yong Son; Nam-Gyu Park; Hyun Suk Jung; Mansoo Choi

Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.


Nature Communications | 2016

Selective dissolution of halide perovskites as a step towards recycling solar cells

Byeong Jo Kim; Dong Hoe Kim; Seung Lee Kwon; So Yeon Park; Zhen Li; Kai Zhu; Hyun Suk Jung

Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb2+ cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.


Journal of Physical Chemistry Letters | 2015

Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells

Gee Yeong Kim; Seol Hee Oh; Bich Phuong Nguyen; William Jo; Byeong Jo Kim; Dong Geon Lee; Hyun Suk Jung

We fabricated a mesoporous perovskite solar cell with a ∼14% conversion efficiency, and we investigated its beneficial grain boundary properties of the perovskite solar cells through the use of scanning probe microscopy. The CH3NH3Pb(I0.88,Br0.12)3 showed a significant potential barrier bending at the grain boundary and induced passivation. The potential difference value in the x = 0.00 sample is ∼50 mV, and the distribution of the positive potential is lower than that of the x = 0.12 sample. We also investigated the polarization and hysteretic properties of the perovskite thin films by measuring the local piezoresponse. Specifically, the charged grain boundaries play a beneficial role in electron-hole depairing and in suppressing recombination in order to realize high-efficiency perovskite solar cells.


ACS Applied Materials & Interfaces | 2017

BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell

Ji Hyun Baek; Byeong Jo Kim; Gill Sang Han; Sung Won Hwang; Dong Rip Kim; In Sun Cho; Hyun Suk Jung

Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO4/WO3/SnO2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO3 deposition, leading to the formation of a double layer of dense WO3 and a WO3/SnO2 mixture at the bottom. Subsequently, a BiVO4 nanoparticle film was deposited by spin coating. Importantly, the WO3/(WO3+SnO2) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO4/WO3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm2 at 1.23 V vs RHE) compared to the previously reported BiVO4/WO3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoOx electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).


ACS Applied Materials & Interfaces | 2014

Polyethylenimine-Assisted Growth of High-Aspect-Ratio Nitrogen-Doped ZnO (NZO) Nanorod Arrays and Their Effect on Performance of Dye-Sensitized Solar Cells

Khalid Mahmood; Bhabani Sankar Swain; Gill-Sang Han; Byeong Jo Kim; Hyun Suk Jung

The realization of arrays of high-aspect-ratio nitrogen-doped ZnO (NZO) nanorod is critical to the development of high-quality nanostructure-based optoelectronic and electronic devices. In this study, we used a solution-based method to grow arrays of vertically aligned high-aspect-ratio NZO nanorods on ZnO seed layer covered fluorine-doped tin oxide substrates. We investigated whether the diameters and aspect ratios of the nanorods were affected by the addition of polyethylenimine (PEI) to the precursor solution used as well as by variations in the growth temperature and the concentration of the precursor solution. The performances of dye-sensitized solar cells (DSSCs) in which the synthesized high-aspect-ratio NZO nanorods were used as the photoanode material were also studied. That the dopant, nitrogen, was introduced into the ZnO lattice was confirmed using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. It was seen that after the addition of PEI, the NZO and ZnO nanorod arrays increased in length and their diameters became smaller (i.e., their aspect ratios increased). This resulted in an increase in the amount of dye absorbed by them, leading to improvements in the DSSCs based on the nanorods. The structural, morphological, optical, and photovoltaic characteristics of ZnO and NZO nanorod arrays synthesized using different precursor concentrations and growth temperatures (160-190 °C) were also examined. We also investigated the effect of the use of PEI on these characteristics. The power conversion efficiency (PCE) of DSSCs fabricated using the NZO nanorod arrays was found to be significantly higher than that of DSSCs based on the pure ZnO nanorod arrays. This increase in efficiency could be attributed to the combined effects of the increase in the charge-carrier concentration, change in morphology, and increase in the Fermi energy levels of the nanorods, which resulted because of N doping. A PCE of 5.0% was obtained for a DSSC based on a film of arrays of NZO nanorods having an aspect ratio of ∼47 and synthesized using PEI.


RSC Advances | 2014

Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film

Khalid Mahmood; Rahim Munir; Bhabani Sankar Swain; Gill-Sang Han; Byeong Jo Kim; Hyun Suk Jung

A novel electrosprayed bilayer film composed of an over-layer (L2) of aluminium-doped ZnO (AZO) nanoflakes (NF-AZO) and a under-layer (L1) of AZO nanocrystallites structure (NC-AZO) named BL:NF/NC-AZO is studied as an excellent field-emitter. The XRD pattern demonstrated that the doped bilayer film has preferential growth along the c-axis with hexagonal wurtzite structure and the (0 0 2) peak shifted toward the larger angle side after doping. The lowest turn-on field of ∼2.8 V μm−1, highest emission current density of 1.95 mA cm−2 is obtained for BL:NF/NC-AZO under the field of 6.8 V μm−1 and as well as the highest field enhancement factor (β) is estimated to be 4370 ± 3, compared to pure ZnO bilayer film (BL:NF/NC-ZnO) and also better than NC-AZO film and possesses the excellent long term stability of emission current. The PL intensity of doped ZnO bilayer film is very much stronger than pure ZnO bilayer structure. The superior field emission properties are attributed to the better morphologies, Al-doping and better crystallinity of bilayer AZO films.

Collaboration


Dive into the Byeong Jo Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam-Gyu Park

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Dong Hoe Kim

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sangwook Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Gill Sang Han

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mansoo Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mincheol Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge