Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byeong Mo Kim is active.

Publication


Featured researches published by Byeong Mo Kim.


Environmental and Molecular Mutagenesis | 2008

Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes.

Su Jin Kang; Byeong Mo Kim; Young Joon Lee; Hai Won Chung

Titanium dioxide nanoparticles (nano‐TiO2) are widely used as a photocatalyst in air and water remediation. These nanoparticles are known to induce toxicity; however, their cytotoxic mechanism is not fully understood. In this study, we investigated the underlying mechanism of nano‐TiO2‐induced cytotoxicity in peripheral blood lymphocytes. We examined the genotoxic effects of nano‐TiO2 in lymphocytes using alkaline single‐cell gel electrophoresis (Comet) and cytokinesis‐block micronucleus (CBMN) assays. Lymphocytes treated with nano‐TiO2 showed significantly increased micronucleus formation and DNA breakage. Western‐blot analysis to identify proteins involved in the p53‐mediated response to DNA damage revealed the accumulation of p53 and activation of DNA damage checkpoint kinases in nano‐TiO2‐treated lymphocytes. However, p21 and bax, downstream targets of p53, were not affected, indicating that nano‐TiO2 does not stimulate transactivational activity of p53. The generation of reactive oxygen species (ROS) in nano‐TiO2‐treated cells was also observed, andN‐acetylcysteine (NAC) supplementation inhibited the level of nano‐TiO2‐induced DNA damage. Given that ROS‐induced DNA damage leads to p53 activation in the DNA damage response, our results suggest that nano‐TiO2 induces ROS generation in lymphocytes, thereby activating p53‐mediated DNA damage checkpoint signals. Environ. Mol. Mutagen., 2008.


Nature | 2014

Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus

Pengda Liu; Michael J. Begley; Wojciech Michowski; Hiroyuki Inuzuka; Miriam B. Ginzberg; Daming Gao; Peiling Tsou; Wenjian Gan; Antonella Papa; Byeong Mo Kim; Lixin Wan; Amrik Singh; Bo Zhai; Min Yuan; Zhiwei Wang; Steven P. Gygi; Tae Ho Lee; Kun Ping Lu; Alex Toker; Pier Paolo Pandolfi; John M. Asara; Marc W. Kirschner; Piotr Sicinski; Lewis C. Cantley; Wenyi Wei

Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers, and is closely associated with poor prognosis and chemo- or radiotherapeutic resistance. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.


Biochemical and Biophysical Research Communications | 2009

Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes

Su Jin Kang; Byeong Mo Kim; Young Joon Lee; Sung Hee Hong; Hai Won Chung

We investigated the signaling pathways underlying nano-TiO(2)-induced apoptosis in cultured human lymphocytes. Nano-TiO(2) increased the proportion of sub-G1 cells, activated caspase-9 and caspase-3, and induced caspase-3-mediated PARP cleavage. Nano-TiO(2) also induced loss of mitochondrial membrane potential, which suggests that nano-TiO(2) induces apoptosis via a mitochondrial pathway. A time-sequence analysis of the induction of apoptosis by nano-TiO(2) revealed that nano-TiO(2) triggered apoptosis through caspase-8/Bid activation. We also observed that inhibition of caspase-8 by z-IETD-fmk suppressed the caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and apoptosis. Nano-TiO(2) activated two MAPKs, p38 and JNK. In addition, the selective p38 inhibitor SB203580 and selective JNK inhibitor SP600125 suppressed nano-TiO(2)-induced apoptosis and caspase-8 activation to moderate and significant extents, respectively. Knockdown of protein levels of JNK1 and p38 using an RNA interference technique also suppressed caspase-8 activation. Our results suggest that nano-TiO(2)-induced apoptosis is mediated by the p38/JNK pathway and the caspase-8-dependent Bid pathway in human lymphocytes.


Toxicology and Applied Pharmacology | 2009

N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells.

Byeong Mo Kim; Yun Jung Choi; Youngsoo Han; Yeon-Sook Yun; Sung Hee Hong

N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8-Bid-Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.


Neurobiology of Disease | 2015

Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease.

Chun Hau Chen; Wenzong Li; Rukhsana Sultana; Mi Hyeon You; Asami Kondo; Koorosh Shahpasand; Byeong Mo Kim; Man Li Luo; Morris Nechama; Yu Min Lin; Yandan Yao; Tae Ho Lee; Xiao Zhen Zhou; Aaron M. Swomley; D. Allan Butterfield; Yan Zhang; Kun Ping Lu

The unique proline isomerase Pin1 is pivotal for protecting against age-dependent neurodegeneration in Alzheimers disease (AD), with its inhibition providing a molecular link between tangle and plaque pathologies. Pin1 is oxidatively modified in human AD brains, but little is known about its regulatory mechanisms and pathological significance of such Pin1 modification. In this paper, our determination of crystal structures of oxidized Pin1 reveals a series of Pin1 oxidative modifications on Cys113 in a sequential fashion. Cys113 oxidization is further confirmed by generating antibodies specifically recognizing oxidized Cys113 of Pin1. Furthermore, Pin1 oxidation on Cys113 inactivates its catalytic activity in vitro, and Ala point substitution of Cys113 inactivates the ability of Pin1 to isomerize tau as well as to promote protein turnover of tau and APP. Moreover, redox regulation affects Pin1 subcellular localization and Pin1-mediated neuronal survival in response to hypoxia treatment. Importantly, Cys113-oxidized Pin1 is significantly increased in human AD brain comparing to age-matched controls. These results not only identify a novel Pin1 oxidation site to be the critical catalytic residue Cys113, but also provide a novel oxidative regulation mechanism for inhibiting Pin1 activity in AD. These results suggest that preventing Pin1 oxidization might help to reduce the risk of AD.


Apoptosis | 2011

Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines

Byeong Mo Kim; Sung Hee Hong

In this study, we investigated the signaling pathways implicated in SSa-induced apoptosis of human colon carcinoma (HCC) cell lines. SSa-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. The fluorescence intensity of DiOC6 was significantly reduced after SSa treatment. CsA significantly inhibited SSa-induced loss of mitochondrial transmembrane potential and moderately inhibited SSa-induced cell death. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Additionally, SSa-induced apoptosis was inhibited by both the selective caspase-2 inhibitor z-VDVAD-fmk and the selective caspase-8 inhibitor z-IETD-fmk and also by si-RNAs against caspase-2 and caspase-8. The selective caspase-9 inhibitor, z-LEHD-fmk, also inhibited SSa-induced apoptosis, albeit to a lesser extent compared to z-VDVAD-fmk and z-IETD-fmk, indicating that both mitochondria-dependent and mitochondria-independent pathways are associated with SSa-induced apoptosis. Both z-VDVAD-fmk and z-IETD-fmk significantly attenuated the colony-inhibiting effect of SSa. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation. Altogether, our results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis.


Cell Death and Disease | 2014

Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function.

Byeong Mo Kim; Mi-Hyeon You; Chun-Hau Chen; Sug Hyung Lee; Hong Y; Adi Kimchi; Xiao Zhen Zhou; Tae Ho Lee

The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer’s disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.


Abdominal Imaging | 1999

Focal eosinophilic infiltration of the liver: a mimick of hepatic metastasis

Je Hwan Won; Myung-Hyun Kim; Byeong Mo Kim; H. Ji; Jae-Joon Chung; Hyunji Yoo; Jong-Han Lee; Y.N. Park; Soon Won Hong

We present three cases of focal eosinophilic infiltration in the liver that mimicked hepatic malignancy on computed tomography during hepatic arteriography (CTHA) and computed tomography during arterial portography (CTAP). In all patients, focal eosinophilic liver infiltration appeared as a solitary nodule or as two nodules without hepatosplenomegaly and showed homogeneous hyperattenuation on CTHA and hypoattenuation on CTAP.


Cancer Letters | 2011

Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells

Byeong Mo Kim; Kyungah Maeng; Kee-Ho Lee; Sung Hee Hong

The present study was performed to investigate the possible combined use of the Cox-2 inhibitor niflumic acid and the PPARγ ligand ciglitazone and to elucidate the mechanisms underlying enhanced apoptosis by this combination treatment in human lung cancer cells. Combined niflumic acid-ciglitazone treatment synergistically induced apoptotic cell death, activated caspase-9, caspase-3, and induced caspase-3-mediated PARP cleavage. The combination treatment also triggered apoptosis through caspase-8/Bid/Bax activation, and the inhibition of caspase-8 suppressed caspase-8/Bid activation, caspase-3-mediated PARP cleavage, and concomitant apoptosis. In addition, combined niflumic acid-ciglitazone treatment significantly induced ER stress responses, and suppression of CHOP expression significantly attenuated the combined niflumic acid-ciglitazone treatment-induced activation of caspase-8 and caspase-3, and the subsequent apoptotic cell death, indicating a role of ER stress in caspase-8 activation and apoptosis. Interestingly, the pro-apoptotic effects of combined niflumic acid-ciglitazone treatment were realized through Cox-2- and PPARγ-independent mechanisms. Taken together, these results suggest that sequential ER stress and caspase-8 activation are critical in combined niflumic acid-ciglitazone treatment-induced apoptosis in human lung cancer cells.


International Journal of Molecular Sciences | 2015

Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

Byeong Mo Kim; Yunkyung Hong; Seunghoon Lee; Pengda Liu; Ji Hong Lim; Yong Heon Lee; Tae Ho Lee; Kyu Tae Chang; Yonggeun Hong

Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

Collaboration


Dive into the Byeong Mo Kim's collaboration.

Top Co-Authors

Avatar

Tae Ho Lee

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hai Won Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Su Jin Kang

Daegu Haany University

View shared research outputs
Top Co-Authors

Avatar

Young Joon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hae Dong Woo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yang Jee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge