Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byong-Taek Lee is active.

Publication


Featured researches published by Byong-Taek Lee.


Journal of Biomedical Materials Research Part B | 2010

Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties

Nguyen Thuy Ba Linh; Young Ki Min; Ho-Yeon Song; Byong-Taek Lee

Electrospinning of polyvinyl alcohol (PVA), gelatin (GE), and a PVA/GE blend was conducted with the aim of fabricating biodegradable scaffolds for tissue engineering. The process parameters including the concentration of GE in PVA/GE blends, electrical field, and tip-to-collector distance (TCD) were investigated. Electrospinning processes were conducted at three different GE concentrations (PVA/GE = 2/8, 6/4, and 8/2), and the voltage and TCD were varied from 18 to 24 kV and 7 to 20 cm, respectively. The average diameter of the electrospun PVA, GE, and PVA/GE blend fibers ranged from 50 to 150 nm. The TCD had significant effects on the average diameter of the PVA/GE nanofiber, while changes in the voltage did not significantly affect the diameter of the PVA/GE nanofiber. The miscibility of the PVA/GE blend fibers was examined by differential scanning calorimetry, and X-ray diffraction was used to determine the crystallinity of the membrane. Tensile strength was measured to evaluate the physical properties of the membrane. Based on the combined results of this study, the PVA/GE membrane holds great promise for use in tissue engineering applications, especially in bone or drug delivery systems.


Journal of Biomaterials Applications | 2012

Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application.

Nguyen Thuy Ba Linh; Byong-Taek Lee

A three-dimensional polymer composite system consisting of polyvinyl alcohol/gelatin (PVA/GE) was fabricated via the electrospinning method and physically cross linked by methanol treatment. The effects of cross-linking between PVA/GE blend on physical, mechanical, and biological properties were investigated. After treating with methanol, PVA/GE mats become dense, hard, and aggregative with increased resistance to water dissolution. Osteoblasts like MG-63 cells were seeded on the surfaces of the cross linked PVA/GE mats and were found to attach firmly by expressing philopodial extensions. In addition, MTT assay and Western Blot analysis confirmed that the cells readily proliferated on the cross linked PVA/GE scaffolds. The osteoblast cell–matrix interaction demonstrated that the active biocompatibility of the mats was facilitated by using GE and cross-linking. In conclusion, our results suggest that cross-linked PVA/GE scaffolds hold promise for tissue engineering applications, especially in the field of artificial bone implant.


Journal of Biomedical Materials Research Part A | 2013

Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects†

Nguyen Thuy Ba Linh; Kap-Ho Lee; Byong-Taek Lee

New biodegradable mats was successfully obtained by functional polyvinyl alcohol (PVA)/Gelatin (GE) blend fiber mats containing different BCP amounts (20, 40, and 50 w/v%) of biphasic calcium phosphate (BCP) nanoparticles for bone regeneration. BCP nanoparticles were loaded and dispersed successfully in the PVA/GE fibrous matrix. The addition of BCP was found to have increased fiber diameter, tensile strength, osteoblast cell adhesion, proliferation, and protein expression. Compared to the others, the 50% BCP-loaded electrospun PVA/GE fibers had the most favorable mechanical properties, cell attachment and growth, and protein expression. In vivo bone formation was examined using rat models, and increased bone formation was observed for the 50% BCP-loaded electrospun PVA/GE blends within 2 and 4 weeks. This result suggests that the 50% BCP-PVA/GE composite nanofiber mat has high potential for use in the field of bone regeneration and tissue engineering.


Science and Technology of Advanced Materials | 2013

In vitro and in vivo evaluation of electrospun PCL/PMMA fibrous scaffolds for bone regeneration

So-Ra Son; Nguyen-Thuy Ba Linh; Hun-Mo Yang; Byong-Taek Lee

Abstract Scaffolds were fabricated by electrospinning using polycaprolactone (PCL) blended with poly(methyl methacrylate) (PMMA) in ratios of 10/0, 7/3, 5/5 and 3/7. The PCL/PMMA ratio affected the fiber diameter, contact angle, tensile strength and biological in vitro and in vivo properties of the scaffolds, and the 7/3 ratio resulted in a higher mechanical strength than 5/5 and 3/7. In vitro cytotoxicity and proliferation of MG-63 osteoblast cells on these blended scaffolds were examined by MTT assay, and it was found that PCL/PMMA blends are suitable for osteoblast cell proliferation. Confocal images and expression of proliferating cell nuclear antigen confirmed the good proliferation and expression of cells on the 7/3 PCL/PMMA fibrous scaffolds. In vivo bone formation was examined using rat models, and bone formation was observed on the 7/3 PCL/PMMA scaffold within 2 months. In vitro and in vivo results suggest that 7/3 PCL/PMMA scaffolds can be used for bone tissue regeneration.


International Journal of Biological Macromolecules | 2015

Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.

Jhaleh Amirian; Nguyen Thuy Ba Linh; Young Ki Min; Byong-Taek Lee

A composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy. The results obtained from Fourier transform infrared spectroscopy showed that BMP-2 and VEGF were successfully coated on Gel-Pec-BCP hydrogel scaffolds. MC3T3-E1 preosteoblasts were cultivated on the scaffolds to investigate the effect of BMP-2 and VEGF on cell viability and proliferation. VEGF and BMP-2 loaded on Gel-Pec-BCP scaffold facilitated increased cell spreading and proliferation compared to Gel-Pec-BCP scaffolds. In vivo, bone formation was examined using rat models. Bone formation was observed in Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds within 4 weeks, and was greatest with Gel-Pec-BCP/BMP-2 scaffolds. In vitro and in vivo results suggest that Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds could enhance bone regeneration.


Journal of Biomaterials Applications | 2015

Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration

So-Ra Son; Swapan Kumar Sarkar; Nguyen-Thuy Ba Linh; Andrew R. Padalhin; Bo Ram Kim; Hae Il Jung; Byong-Taek Lee

Microporous calcium phosphate based synthetic bone substitutes are used for bone defect healing. Different growth factor loading has been investigated for enhanced bone regeneration. The platelet is a cellular component of blood which naturally contains a pool of necessary growth factors that mediate initiation, continuation, and completion of cellular mechanism of healing. In this work, we have investigated the encapsulation and immobilization of platelet-rich plasma (PRP) with natural polymers like hyaluronic acid (HA) and gelatin (Gel) and loading them in a biphasic calcium phosphate (BCP) scaffold, for a synthetic-allologous hybrid scaffold. Effect of PRP addition in small doses was evaluated for osteogenic potential in vitro and in vivo. BCP (10%) mixed HA–Gel hydrogel with or without PRP, was loaded into a BCP sponge scaffold. We investigated the hydrogel-induced improvement in mechanical property and PRP-mediated enhancement in biocompatibility. In vitro studies for cytotoxicity, cell attachment, and proliferation were carried out using MC3T3-E1 pre-osteoblast cells. In in vitro studies, the cell count, cell proliferation, and cell survival were higher in the scaffold with PRP loading than without PRP. However, in the in vivo studies using a rat model, the PRP scaffold was not superior to the scaffold without PRP. This discrepancy was investigated in terms of the interaction of PRP in the in vivo environment.


Journal of Biomedical Materials Research Part A | 2013

Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering

Dibakar Mondal; Linh Nguyen; Ik-Hyun Oh; Byong-Taek Lee

Important issues in developing hydroxyapatite (HAp)- and titanium (Ti)-based composite biomaterials for orthopedic or dental devices include the dissociation of HAp during fabrication and its influences in the microstructure and biocompatibility of the final composite. During the densification by sintering of HAp/Ti composites, Ti reacts with -OH freed from HAp to form TiO2 thus dissociated HAp into Ca3(PO4)2, CaO, CaTiO3, TiP, and so forth. To inhibit this reaction, composites were fabricated with Ti and 30, 50, and 70 vol % β-tricalcium phosphate (β-TCP) instead of HAp by spark plasma sintering at 1200°C. It has been observed that after sintering at 1200°C, Ti also reacted with TCP, but unlike HAp/Ti composites, the final TCP/Ti composites contained significant amounts of unreacted TCP and Ti phases. The initial 70 vol % TCP/Ti composite showed compressive strength of 388.5 MPa, Youngs modulus of 3.23 GPa, and Vickers hardness of 361.9 HV after sintering. The in vitro cytotoxicity and proliferation of osteoblast cells on the composites surfaces showed that the addition of a higher amount of TCP with Ti was beneficial by increasing cell viability, cell-composite attachment and proliferation. Osteopontin and collagen type II protein expression from osteoblasts cultured onto the 70% TCP-Ti composite was also higher than other composites and pure Ti. In vivo study verified that within 3 months of implantation in an animal body, 70% TCP-Ti had an excellent bone-implant interface compared with a pure Ti metal implant.


Asaio Journal | 2014

In vitro study of CaTiO3-hydroxyapatite composites for bone tissue engineering.

Thuy Ba Linh N; Dibakar Mondal; Byong-Taek Lee

A biocomposite composed of hydroxyapatite (HAp) and CaTiO3 was fabricated to study the phase stability, mechanical strength, and biocompatibility for bone tissue engineering. To investigate the optimal concentrations for the biocomposite, different HAp concentrations (0%, 50%, 70%, and 100%) were mixed with CaTiO3 and sintered in a microwave furnace. X-ray diffraction patterns of CaTiO3/HAp composites indicated the phase stability of CaTiO3/HAp. Mechanical properties were characterized by Vickers hardness, Young modulus, fracture toughness, brittleness, and compressive strength. MC3T3-E1 cells were used for in vitro studies to investigate the biocompatibility of CaTiO3/HAp composites, using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and immunofluorescence. The in vitro studies confirmed the highest cell viability on 70HAp at 1, 3, and 7 days. Collagen Type I, osteopontin, and osteocalcin expressions were evaluated by Western blotting and a strong signal of collagen Type I and osteopontin expression was shown by cells grown on 70HAp and 100HAp. Interestingly, osteocalcin signal was found only on 70HAp at day 7. The expression of alkaline phosphatase and osteopontin confirmed that the 70HAp expressed the strongest fluorescent signal as compared with pure materials. Thus considering the biological properties, 70HAp biocomposite was found ideal for bone tissue engineering.


Tissue Engineering Part A | 2014

A Combination of Biphasic Calcium Phosphate Scaffold with Hyaluronic Acid-Gelatin Hydrogel as a New Tool for Bone Regeneration

Thuy Ba Linh Nguyen; Byong-Taek Lee


Tissue Engineering Part A | 2014

In Vitro and In Vivo Studies of BMP-2-Loaded PCL–Gelatin–BCP Electrospun Scaffolds

Boram Kim; Thuy Ba Linh Nguyen; Young-Ki Min; Byong-Taek Lee

Collaboration


Dive into the Byong-Taek Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Ki Min

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Dibakar Mondal

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Jhaleh Amirian

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Kap-Ho Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

So-Ra Son

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boram Kim

Soonchunhyang University

View shared research outputs
Top Co-Authors

Avatar

Hae Il Jung

Soonchunhyang University

View shared research outputs
Researchain Logo
Decentralizing Knowledge