Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byoung Choul Kim is active.

Publication


Featured researches published by Byoung Choul Kim.


Journal of the American Chemical Society | 2013

Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

Dong-Wook Lee; Onas Bolton; Byoung Choul Kim; Ji Ho Youk; Shuichi Takayama; Jinsang Kim

Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.


Chemical Society Reviews | 2011

Flexible fabrication and applications of polymer nanochannels and nanoslits.

Rattikan Chantiwas; Sunggook Park; Steven A. Soper; Byoung Choul Kim; Shuichi Takayama; Vijaya Sunkara; Hyundoo Hwang; Yoon-Kyoung Cho

Fluidic devices that employ nanoscale structures (<100 nm in one or two dimensions, slits or channels, respectively) are generating great interest due to the unique properties afforded by this size domain compared to their micro-scale counterparts. Examples of interesting nanoscale phenomena include the ability to preconcentrate ionic species at extremely high levels due to ion selective migration, unique molecular separation modalities, confined environments to allow biopolymer stretching and elongation and solid-phase bioreactions that are not constrained by mass transport artifacts. Indeed, many examples in the literature have demonstrated these unique opportunities, although predominately using glass, fused silica or silicon as the substrate material. Polymer microfluidics has established itself as an alternative to glass, fused silica, or silicon-based fluidic devices. The primary advantages arising from the use of polymers are the diverse fabrication protocols that can be used to produce the desired structures, the extensive array of physiochemical properties associated with different polymeric materials, and the simple and robust modification strategies that can be employed to alter the substrates surface chemistry. However, while the strengths of polymer microfluidics is currently being realized, the evolution of polymer-based nanofluidics has only recently been reported. In this critical review, the opportunities afforded by polymer-based nanofluidics will be discussed using both elastomeric and thermoplastic materials. In particular, various fabrication modalities will be discussed along with the nanometre size domains that they can achieve for both elastomer and thermoplastic materials. Different polymer substrates that can be used for nanofluidics will be presented along with comparisons to inorganic nanodevices and the consequences of material differences on the fabrication and operation of nanofluidic devices (257 references).


Nano Letters | 2012

Nanoscale Squeezing in Elastomeric Nanochannels for Single Chromatin Linearization

Toshiki Matsuoka; Byoung Choul Kim; Jiexi Huang; Nicholas J. Douville; M. D. Thouless; Shuichi Takayama

This paper describes a novel nanofluidic phenomenon where untethered DNA and chromatin are linearized by rapidly narrowing an elastomeric nanochannel filled with solutions of the biopolymers. This nanoscale squeezing procedure generates hydrodynamic flows while also confining the biopolymers into smaller and smaller volumes. The unique features of this technique enable full linearization then trapping of biopolymers such as DNA. The versatility of the method is also demonstrated by analysis of chromatin stretchability and mapping of histone states using single strands of chromatin.


Scientific Reports | 2013

Guided fracture of films on soft substrates to create micro/nano-feature arrays with controlled periodicity

Byoung Choul Kim; Toshiki Matsuoka; Christopher Moraes; Jiexi Huang; M. D. Thouless; Shuichi Takayama

While the formation of cracks is often stochastic and considered undesirable, controlled fracture would enable rapid and low cost manufacture of micro/nanostructures. Here, we report a propagation-controlled technique to guide fracture of thin films supported on soft substrates to create crack arrays with highly controlled periodicity. Precision crack patterns are obtained by the use of strategically positioned stress-focusing V-notch features under conditions of slow application of strain to a degree where the notch features and intrinsic crack spacing match. This simple but robust approach provides a variety of precisely spaced crack arrays on both flat and curved surfaces. The general principles are applicable to a wide variety of multi-layered materials systems because the method does not require the careful control of defects associated with initiation-controlled approaches. There are also no intrinsic limitations on the area over which such patterning can be performed opening the way for large area micro/nano-manufacturing.


Biofabrication | 2016

Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip.

Sejoong Kim; Sasha Cai Lesher-Perez; Byoung Choul Kim; Cameron Yamanishi; Joseph M. Labuz; Brendan M. Leung; Shuichi Takayama

Nephrotoxicity is often underestimated because renal clearance in animals is higher compared to in humans. This paper aims to illustrate the potential to fill in such pharmacokinetic gaps between animals and humans using a microfluidic kidney model. As an initial demonstration, we compare nephrotoxicity of a drug, administered at the same total dosage, but using different pharmacokinetic regimens. Kidney epithelial cell, cultured under physiological shear stress conditions, are exposed to gentamicin using regimens that mimic the pharmacokinetics of bolus injection or continuous infusion in humans. The perfusion culture utilized is important both for controlling drug exposure and for providing cells with physiological shear stress (1.0 dyn cm(-2)). Compared to static cultures, perfusion culture improves epithelial barrier function. We tested two drug treatment regimens that give the same gentamycin dose over a 24 h period. In one regimen, we mimicked drug clearance profiles for human bolus injection by starting cell exposure at 19.2 mM of gentamicin and reducing the dosage level by half every 2 h over a 24 h period. In the other regimen, we continuously infused gentamicin (3 mM for 24 h). Although junctional protein immunoreactivity was decreased with both regimens, ZO-1 and occludin fluorescence decreased less with the bolus injection mimicking regimen. The bolus injection mimicking regimen also led to less cytotoxicity and allowed the epithelium to maintain low permeability, while continuous infusion led to an increase in cytotoxicity and permeability. These data show that gentamicin disrupts cell-cell junctions, increases membrane permeability, and decreases cell viability particularly with prolonged low-level exposure. Importantly a bolus injection mimicking regimen alleviates much of the nephrotoxicity compared to the continuous infused regimen. In addition to potential relevance to clinical gentamicin administration regimens, the results are important in demonstrating the general potential of using microfluidic cell culture models for pharmacokinetics and toxicity studies.


Biomaterials Science | 2014

Fracture-based micro- and nanofabrication for biological applications.

Byoung Choul Kim; Christopher Moraes; Jiexi Huang; M. D. Thouless; Shuichi Takayama

While fracture is generally considered to be undesirable in various manufacturing processes, delicate control of fracture can be successfully implemented to generate structures at micro/nano length scales. Fracture-based fabrication techniques can serve as a template-free manufacturing method, and enables highly-ordered patterns or fluidic channels to be formed over large areas in a simple and cost-effective manner. Such technologies can be leveraged to address biologically-relevant problems, such as in the analysis of biomolecules or in the design of culture systems that imitate the cellular or molecular environment. This mini review provides an overview of current fracture-guided fabrication techniques and their biological applications. We first survey the mechanical principles of fracture-based approaches. Then we describe biological applications at the cellular and molecular levels. Finally, we discuss unique advantages of the different system for biological studies.


Biomicrofluidics | 2013

Micro- and nanofluidic technologies for epigenetic profiling

Toshiki Matsuoka; Byoung Choul Kim; Christopher Moraes; Minsub Han; Shuichi Takayama

This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.


Journal of Materials Science | 2014

The control of crack arrays in thin films

Jiexi Huang; Byoung Choul Kim; Shuichi Takayama; M. D. Thouless

Thin-film fracture can be used as a nano-fabrication technique, but generally, it is a stochastic process that results in nonuniform patterns. Crack spacings depend on the interaction between intrinsic flaw populations and the fracture mechanics of crack channeling. Geometrical features can be used to trigger cracks at specific locations to generate controlled crack patterns. However, while this basic idea is intuitive, it is not so obvious how to realize the concept in practice, nor what the limitations are. The control of crack arrays depends on the nature of the intrinsic flaw population. If there is a relatively large density of long flaws, as commonly assumed in fracture mechanics analyses, reliable crack patterns can be obtained fairly robustly using relatively blunt geometrical features to initiate cracks, provided the applied strain is carefully matched to the properties of the system and the desired crack spacing. This process is analyzed both for cracks confined to the thickness of a film and for cracks growing into a substrate. The latter analysis is complicated by the fact that increases in strain can either drive cracks deeper into the substrate or generate new cracks at shallower depths. If the intrinsic flaws are all very short, the geometrical features need to be very sharp to achieve the desired patterns. While careful control of the applied strain is not required, the strain needs to be relatively large compared to that which would be required to propagate a large flaw across the film. This results in an approach that is not robust against the introduction of accidental damage or a few large flaws.


Journal of Physical Chemistry B | 2013

Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy

Mou Chi Cheng; Austin T. Leske; Toshiki Matsuoka; Byoung Choul Kim; Jaesung Lee; Mark A. Burns; Shuichi Takayama; Julie S. Biteen

Single-molecule super-resolution microscopy is an emerging technique for nanometer-scale fluorescence imaging, but in vitro single-molecule imaging protocols typically require a constant supply of reagents, and such transport is restricted in constrained geometries. In this article, we develop single-molecule micelle-assisted blink (MAB) microcopy to enable subdiffraction-limit imaging of nanochannels with better than 40 nm accuracy. The method, based on micelles and thiol-related photoswitching, is used to measure nanochannels formed in polydimethylsiloxane through tensile cracking. These conduits are reversibly size-adjustable from a few nanometers up to a micrometer and enable filtering of small particles and linearization of DNA. Unfortunately, conventional techniques cannot be used to measure widths, characterize heterogeneities, or discover porosity in situ. We overcome the access barriers by using sodium dodecyl sulfate (SDS), an ionic surfactant, to facilitate delivery of Cy5 dye and β-mercaptoethanol reducing agent in the confined geometry. These SDS micelles and admicelles have the further benefit of slowing diffusion of Cy5 to improve localization accuracy. We use MAB microscopy to measure nanochannel widths, to reveal heterogeneity along channel lengths and between different channels in the same device, and to probe biologically relevant information about the nanoenvironment, such as solvent accessibility.


Scientific Reports | 2018

TGFβ1 reinforces arterial aging in the vascular smooth muscle cell through a long-range regulation of the cytoskeletal stiffness

Wanqu Zhu; Byoung Choul Kim; Mingyi Wang; Jessie Huang; Abraham Isak; Natalia Marchesan Bexiga; Robert E. Monticone; Taekjip Ha; Edward G. Lakatta; Steven S. An

Here we report exquisitely distinct material properties of primary vascular smooth muscle (VSM) cells isolated from the thoracic aorta of adult (8 months) vs. aged (30 months) F344XBN rats. Individual VSM cells derived from the aged animals showed a tense internal network of the actin cytoskeleton (CSK), exhibiting increased stiffness (elastic) and frictional (loss) moduli than those derived from the adult animals over a wide frequency range of the imposed oscillatory deformation. This discrete mechanical response was long-lived in culture and persistent across a physiological range of matrix rigidity. Strikingly, the pro-fibrotic transforming growth factor β1 (TGFβ1) emerged as a specific modifier of age-associated VSM stiffening in vitro. TGFβ1 reinforced the mechanical phenotype of arterial aging in VSM cells on multiple time and length scales through clustering of mechanosensitive α5β1 and αvβ3 integrins. Taken together, these studies identify a novel nodal point for the long-range regulation of VSM stiffness and serve as a proof-of-concept that the broad-based inhibition of TGFβ1 expression, or TGFβ1 signal transduction in VSM, may be a useful therapeutic approach to mitigate the pathologic progression of central arterial wall stiffening associated with aging.

Collaboration


Dive into the Byoung Choul Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiexi Huang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Minsub Han

Incheon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge