Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byram W. Bridle is active.

Publication


Featured researches published by Byram W. Bridle.


Molecular Therapy | 2010

Potentiating Cancer Immunotherapy Using an Oncolytic Virus

Byram W. Bridle; Kyle B. Stephenson; Jeanette E Boudreau; Sandeep Koshy; Natasha Kazdhan; Eleanor Pullenayegum; Jérôme Brunellière; Jonathan Bramson; Brian D. Lichty; Yonghong Wan

Oncolytic viruses (OVs) are highly immunogenic and this limits their use in immune-competent hosts. Although immunosuppression may improve viral oncolysis, this gain is likely achieved at the cost of antitumoral immunity. We have developed a strategy wherein the immune response against the OV leads to enhanced therapeutic outcomes. We demonstrate that immunization with an adenoviral (Ad) vaccine before treatment with an oncolytic vesicular stomatitis virus (VSV) expressing the same tumor antigen (Ag) leads to significantly enhanced antitumoral immunity. Intratumoral replication of VSV was minimally attenuated in Ad-immunized hosts but extending the interval between treatments reduced the attenuating effect and further increased antitumoral immunity. More importantly, our combination approach shifted the immune response from viral Ags to tumor Ags and further reduced OV replication in normal tissues, leading to enhancements in both efficacy and safety. These studies also highlight the benefits of using a replicating, OV to boost a pre-existing antitumoral immune response as this approach generated larger responses versus tumor Ag in tumor-bearing hosts than could be achieved in tumor-free hosts. This strategy should be applicable to other vector combinations, tumor Ags, and tumor targets.


Molecular Therapy | 2013

HDAC Inhibition Suppresses Primary Immune Responses, Enhances Secondary Immune Responses, and Abrogates Autoimmunity During Tumor Immunotherapy

Byram W. Bridle; Lan Chen; Chantal G Lemay; Jean-Simon Diallo; Jonathan Pol; Andrew Nguyen; Alfredo Capretta; Rongqiao He; Jonathan Bramson; John C. Bell; Brian D. Lichty; Yonghong Wan

Histone deacetylase inhibitors (HDACi) can modulate innate antiviral responses and render tumors more susceptible to oncolytic viruses (OVs); however, their effects on adaptive immunity in this context are largely unknown. Our present study reveals an unexpected property of the HDACi MS-275 that enhances viral vector-induced lymphopenia leading to selective depletion of bystander lymphocytes and regulatory T cells while allowing expansion of antigen-specific secondary responses. Coadministration of vaccine plus drug during the boosting phase focuses the immune response on the tumor by suppressing the primary immune response against the vaccine vector and enhancing the secondary response against the tumor antigen. Furthermore, improvement of T cell functionality was evident suggesting that MS-275 can orchestrate a complex array of effects that synergize immunotherapy and viral oncolysis. Surprisingly, while MS-275 dramatically enhanced efficacy, it suppressed autoimmune pathology, profoundly improving the therapeutic index.


Molecular Therapy | 2014

Maraba Virus as a Potent Oncolytic Vaccine Vector

Jonathan Pol; Liang Zhang; Byram W. Bridle; Kyle B. Stephenson; Julien Rességuier; Stephen Hanson; Lan Chen; Natasha Kazdhan; Jonathan Bramson; David F. Stojdl; Yonghong Wan; Brian D. Lichty

The rhabdovirus Maraba has recently been characterized as a potent oncolytic virus. In the present study, we engineered an attenuated Maraba strain, defined as MG1, to express a melanoma-associated tumor antigen. Its ability to mount an antitumor immunity was evaluated in tumor-free and melanoma tumor-bearing mice. Alone, the MG1 vaccine appeared insufficient to prime detectable adaptive immunity against the tumor antigen. However, when used as a boosting vector in a heterologous prime-boost regimen, MG1 vaccine rapidly generated strong antigen-specific T-cell immune responses. Once applied for treating syngeneic murine melanoma tumors, our oncolytic prime-boost vaccination protocol involving Maraba MG1 dramatically extended median survival and allowed complete remission in more than 20% of the animals treated. This work describes Maraba virus MG1 as a potent vaccine vector for cancer immunotherapy displaying both oncolytic activity and a remarkable ability to boost adaptive antitumor immunity.


Molecular Therapy | 2009

Vesicular Stomatitis Virus as a Novel Cancer Vaccine Vector to Prime Antitumor Immunity Amenable to Rapid Boosting With Adenovirus

Byram W. Bridle; Jeanette E Boudreau; Brian D. Lichty; Jérôme Brunellière; Kyle B. Stephenson; Sandeep Koshy; Jonathan Bramson; Yonghong Wan

Vesicular stomatitis virus (VSV) has proven to be an effective vaccine vector for immunization against viral infection, but its potential to induce an immune response to a self-tumor antigen has not been investigated. We constructed a recombinant VSV expressing human dopachrome tautomerase (hDCT) and evaluated its immunogenicity in a murine melanoma model. Intranasal delivery of VSV-hDCT activated both CD4(+) and CD8(+) DCT-specific T-cell responses. The magnitude of these responses could be significantly increased by booster immunization with recombinant adenovirus (Ad)-hDCT, which led to enhanced efficacy against B16-F10 melanoma in both prophylactic and therapeutic settings. Notably, the interval of VSV/Ad heterologous vaccination could be shortened to as few as 4 days, making it a potential regimen to rapidly expand antigen-specific effector cells. Furthermore, VSV-hDCT could increase DCT-specific T-cell responses primed by Ad-hDCT, suggesting VSV is efficient for both priming and boosting of the immune response against a self-tumor antigen.


Molecular Therapy | 2009

Recombinant Vesicular Stomatitis Virus Transduction of Dendritic Cells Enhances Their Ability to Prime Innate and Adaptive Antitumor Immunity

Jeanette E Boudreau; Byram W. Bridle; Kyle B. Stephenson; Kristina M. Jenkins; Jérôme Brunellière; Jonathan Bramson; Brian D. Lichty; Yonghong Wan

Dendritic cell (DC)-based vaccines are a promising strategy for tumor immunotherapy due to their ability to activate both antigen-specific T-cell immunity and innate immune effector components, including natural killer (NK) cells. However, the optimal mode of antigen delivery and DC activation remains to be determined. Using M protein mutant vesicular stomatitis virus (DeltaM51-VSV) as a gene-delivery vector, we demonstrate that a high level of transgene expression could be achieved in approximately 70% of DCs without affecting cell viability. Furthermore, DeltaM51-VSV infection activated DCs to produce proinflammatory cytokines (interleukin-12, tumor necrosis factor-alpha, and interferon (IFN)alpha/beta), and to display a mature phenotype (CD40(high)CD86(high) major histocompatibility complex (MHC II)(high)). When delivered to mice bearing 10-day-old lung metastatic tumors, DCs infected with DeltaM51-VSV encoding a tumor-associated antigen mediated significant control of tumor growth by engaging both NK and CD8(+) T cells. Importantly, depletion of NK cells completely abrogated tumor destruction, indicating that NK cells play a critical role for this DC vaccine-induced therapeutic outcome. Our findings identify DeltaM51-VSV as both an efficient gene-delivery vector and a maturation agent allowing DC vaccines to overcome immunosuppression in the tumor-bearing host.


Journal of Immunology | 2013

Targeted Inhibition of Serotonin Type 7 (5-HT7) Receptor Function Modulates Immune Responses and Reduces the Severity of Intestinal Inflammation

Janice J. Kim; Byram W. Bridle; Jean-Eric Ghia; Huaqing Wang; Shahzad N. Syed; Marcus Manocha; Palanivel Rengasamy; Mohammad Sharif Shajib; Yonghong Wan; Peter B. Hedlund; Waliul I. Khan

Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7−/−) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7−/− mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7−/− mice and in mice reconstituted with bone marrow cells from 5-HT7−/− mice compared with control mice after DSS colitis. 5-HT7−/− mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.


Molecular Therapy | 2012

Harnessing Oncolytic Virus-mediated Antitumor Immunity in an Infected Cell Vaccine

Chantal G Lemay; Julia Rintoul; Agnieszka Kus; Jennifer M Paterson; Vanessa Garcia; Theresa Falls; Lisa Ferreira; Byram W. Bridle; David P. Conrad; Vera Tang; Jean-Simon Diallo; Rozanne Arulanandam; Fabrice Le Boeuf; Kenneth Garson; Barbara C. Vanderhyden; David F. Stojdl; Brian D. Lichty; Harold Atkins; Kelley Parato; John C. Bell; Rebecca C. Auer

Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSVs extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.


Cytokine & Growth Factor Reviews | 2010

Combining oncolytic virotherapy and tumour vaccination

Byram W. Bridle; Stephen Hanson; Brian D. Lichty

The interactions between the immune system, a malignant tumour and an oncolytic virus are complex and poorly understood. For oncolytic viruses to become successful therapeutics we need to better understand these interactions and identify strategies to take advantage of defects in the innate immune response within tumours and avoid cellular anti-viral responses while capitalizing on anti-tumoural immunity. In this review we will discuss the evidence for the induction of tumour-specific immune responses by oncolytic viruses as well as by cancer vaccines. We will then describe some of the barriers to successful cancer immunotherapy, and finally we will outline a strategy for enhancing anti-tumoural immunity while reducing anti-viral immunity by combining tumour vaccination with oncolytic viral therapy.


OncoImmunology | 2013

Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 + T-cell responses to anticancer vaccines

Byram W. Bridle; Derek Clouthier; Liang Zhang; Jonathan Pol; Lan Chen; Brian D. Lichty; Jonathan Bramson; Yonghong Wan

The ability of heterologous prime-boost vaccination to elicit robust CD8+ T cell responses has been well documented. In contrast, relatively little is known about how this immunotherapeutic strategy impacts the functional qualities of expanded T cells in the course of effector and memory responses. Using vesicular stomatitis virus (VSV) as a boosting vector in mice, we demonstrate that a massive secondary expansion of CD8+ T cells can be achieved shortly after priming with recombinant adenoviral vectors. Importantly, VSV-boosted CD8+ T cells were more potent than those primed by adenoviruses only, as measured by cytokine production, granzyme B expression, and functional avidity. Upon adoptive transfer, equivalent numbers of VSV-expanded CD8+ T cells were more effective (on a per-cell basis) in mediating antitumor and antiviral immunity than T cells only primed with adenoviruses. Furthermore, VSV boosting accelerated the progression of expanded CD8+ T lymphocytes to a central memory phenotype, thereby altering the effector memory profile typically associated with adenoviral vaccination. Finally, the functional superiority of VSV-expanded T cells remained evident 100 d after boosting, suggesting that VSV-driven immunological responses are of sufficient duration for therapeutic applications. Our data strongly support the choice of VSV as a boosting vector in prime-boost vaccination strategies, enabling a rapid amplification of CD8+ T cells and improving the quality of expanded T cells during both early and late immunological responses.


Molecular Therapy | 2012

ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic

Julia Rintoul; Chantal G Lemay; Lee-Hwa Tai; Marianne Stanford; Theresa J Falls; Christiano Tanese de Souza; Byram W. Bridle; Manijeh Daneshmand; Pamela S. Ohashi; Yonghong Wan; Brian D. Lichty; Andrew A. Mercer; Rebecca C. Auer; Harold Atkins; John C. Bell

Replicating viruses for the treatment of cancer have a number of advantages over traditional therapeutic modalities. They are highly targeted, self-amplifying, and have the added potential to act as both gene-therapy delivery vehicles and oncolytic agents. Parapoxvirus ovis or Orf virus (ORFV) is the prototypic species of the Parapoxvirus genus, causing a benign disease in its natural ungulate host. ORFV possesses a number of unique properties that make it an ideal viral backbone for the development of a cancer therapeutic: it is safe in humans, has the ability to cause repeat infections even in the presence of antibody, and it induces a potent T(h)-1-dominated immune response. Here, we show that live replicating ORFV induces an antitumor immune response in multiple syngeneic mouse models of cancer that is mediated largely by the potent activation of both cytokine-secreting, and tumoricidal natural killer (NK) cells. We have also highlighted the clinical potential of the virus by demonstration of human cancer cell oncolysis including efficacy in an A549 xenograft model of cancer.

Collaboration


Dive into the Byram W. Bridle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge