Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byron C. Crump is active.

Publication


Featured researches published by Byron C. Crump.


Archives of Microbiology | 1993

Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent

Gaël Erauso; Anna-Louise Reysenbach; Anne Godfroy; Jean-Roch Meunier; Byron C. Crump; Frédéric Partensky; John A. Baross; Viggo Thor Marteinsson; Georges Barbier; Norman R. Pace; Daniel Prieur

A novel, hyperthermophilic, anaerobic, sulfurmetabolizing archaeon was isolated from a fluid sample from recently discovered hydrothermal vents in the North Fiji basin (SW Pacific), at 2000 m depth. The new organism, strain GE5, is a gram-negative, highly motile coccus. It grows between 67° and 102°C under atmospheric pressure, with an optimum at 96°C (doubling time 33 min). The upper growth temperature is extended by at least 3°C when cells are cultivated under in situ hydrostatic pressures (20 MPa). Strain GE5 is an obligate heterotroph, fermenting peptides, or mixtures of amino acids to acetate, isovalerate, isobutyrate, propionate, H2 and CO2. Hydrogen inhibits growth unless sulfur is present. In the presence of sulfur, H2S is then produced. Phylogenetic analyses of the 16 S rRNA sequence of strain GE5 places the new isolate within the Thermococcales. By its high growth temperature and physiological features the new isolate ressembles Pyrococcus sp. However it deffers by a 7% mol upper G+C-content and shows low level of DNA similarity with the two previously described species. Based on these differences the description of strain GE5 as a new species Pyrococcus abyssi (CNCM I-1302) is proposed.


Ecology | 2006

VARIATION IN DISSOLVED ORGANIC MATTER CONTROLS BACTERIAL PRODUCTION AND COMMUNITY COMPOSITION

Kristin E. Judd; Byron C. Crump; George W. Kling

An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities. Bacterial production was measured, and DOM chemistry and bacterial community composition (using denaturing gradient gel electrophoresis of 16S rRNA genes) were characterized following incubations. Bacterial production, dissolved organic carbon (DOC)-specific bacterial production, and DOC consumption were greatest in mesocosms fed soil water DOM; soil water DOM enhanced lake and stream bacterial production by 320-670% relative to lake and stream controls. Stream DOM added to lake bacteria depressed bacterial production relative to lake controls in the early season (-78%) but not the mid-season experiment. Addition of upslope DOM to stream and lake bacterial communities resulted in significant changes in bacterial community composition relative to controls. In four of five DOM treatments, the bacterial community composition converged to the DOM source community regardless of the initial inoculum. These results demonstrate that shifts in the supply of natural DOM were followed by changes in both bacterial production and community composition, suggesting that changes in function are likely predicated on at least an initial change in the community composition. The results indicate that variation in DOM composition of soil and surface waters influences bacterial community dynamics and controls rates of carbon processing in set patterns across the landscape.


Science | 2014

Sunlight controls water column processing of carbon in arctic fresh waters

Rose M. Cory; Collin P. Ward; Byron C. Crump; George W. Kling

Illuminating the pathway to destruction Arctic lakes are an important source of atmospheric CO2 and therefore play a role in climate change. It is thus vital to know how the rapid Arctic warming will affect them. Cory et al. now show that light is the biggest culprit in the breakdown of carbon from thawing permafrost soils (see the Perspective by Tranvik). This carbon then moves out into Arctic lakes and streams. Contrary to previous expectations, these photochemical processes cause much more destruction of the organic molecules in fresh water than bacterial respiration does. Science, this issue p. 925; see also p. 870 Photochemical reactions cause most of the breakdown of carbon released from permafrost into arctic inland waters. [Also see Perspective by Tranvik] Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget.


The ISME Journal | 2012

Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient

Caroline S Fortunato; Peter Zuber; António M. Baptista; Byron C. Crump

Few studies of microbial biogeography address variability across both multiple habitats and multiple seasons. Here we examine the spatial and temporal variability of bacterioplankton community composition of the Columbia River coastal margin using 16S amplicon pyrosequencing of 300 water samples collected in 2007 and 2008. Communities separated into seven groups (ANOSIM, P<0.001): river, estuary, plume, epipelagic, mesopelagic, shelf bottom (depth<350 m) and slope bottom (depth>850 m). The ordination of these samples was correlated with salinity (ρ=−0.83) and depth (ρ=−0.62). Temporal patterns were obscured by spatial variability among the coastal environments, and could only be detected within individual groups. Thus, structuring environmental factors (for example, salinity, depth) dominate over seasonal changes in determining community composition. Seasonal variability was detected across an annual cycle in the river, estuary and plume where communities separated into two groups, early year (April–July) and late year (August–Nov), demonstrating annual reassembly of communities over time. Determining both the spatial and temporal variability of bacterioplankton communities provides a framework for modeling these communities across environmental gradients from river to deep ocean.


Ecology | 2007

BIOGEOGRAPHY OF BACTERIOPLANKTON IN LAKES AND STREAMS OF AN ARCTIC TUNDRA CATCHMENT

Byron C. Crump; Heather E. Adams; John E. Hobbie; George W. Kling

Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (<10 km) and suggest that geographic distance and connectivity influence the distribution of bacterioplankton communities across a landscape.


The ISME Journal | 2012

Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils.

Byron C. Crump; Linda A. Amaral-Zettler; George W. Kling

Microbes are transported in hydrological networks through many environments, but the nature and dynamics of underlying microbial metacommunities and the impact of downslope inoculation on patterns of microbial diversity across landscapes are unknown. Pyrosequencing of small subunit ribosomal RNA gene hypervariable regions to characterize microbial communities along a hydrological continuum in arctic tundra showed a pattern of decreasing diversity downslope, with highest species richness in soil waters and headwater streams, and lowest richness in lake water. In a downstream lake, 58% and 43% of the bacterial and archaeal taxa, respectively, were also detected in diverse upslope communities, including most of the numerically dominant lake taxa. In contrast, only 18% of microbial eukaryotic taxa in the lake were detected upslope. We suggest that patterns of diversity in surface waters are structured by initial inoculation from microbial reservoirs in soils followed by a species-sorting process during downslope dispersal of both common and rare microbial taxa. Our results suggest that, unlike for metazoans, a substantial portion of bacterial and archaeal diversity in surface freshwaters may originate in complex soil environments.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic

Rose M. Cory; Byron C. Crump; Jason A. Dobkowski; George W. Kling

Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface. In this study we manipulated water released from areas of thermokarst activity to show that newly exposed DOC is >40% more susceptible to microbial conversion to CO2 when exposed to UV light than when kept dark. When integrated over the water column of receiving rivers, this susceptibility translates to the light-stimulated bacterial activity being on average from 11% to 40% of the total areal activity in turbid versus DOC-colored rivers, respectively. The range of DOC lability to microbes seems to depend on prior light exposure, implying that sunlight may act as an amplification factor in the conversion of frozen C stores to C gases in the atmosphere.


Environmental Microbiology | 2010

Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams

Heather E. Adams; Byron C. Crump; George W. Kling

The impact of temperature on bacterial activity and community composition was investigated in arctic lakes and streams in northern Alaska. Aquatic bacterial communities incubated at different temperatures had different rates of production, as measured by (14)C-leucine uptake, indicating that populations within the communities had different temperature optima. Samples from Toolik Lake inlet and outlet were collected at water temperatures of 14.2 degrees C and 15.9 degrees C, respectively, and subsamples incubated at temperatures ranging from 6 degrees C to 20 degrees C. After 5 days, productivity rates varied from 0.5 to approximately 13.7 microg C l(-1) day(-1) and two distinct activity optima appeared at 12 degrees C and 20 degrees C. At these optima, activity was 2- to 11-fold higher than at other incubation temperatures. The presence of two temperature optima indicates psychrophilic and psychrotolerant bacteria dominate under different conditions. Community fingerprinting via denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes showed strong shifts in the composition of communities driven more by temperature than by differences in dissolved organic matter source; e.g. four and seven unique operational taxonomic units (OTUs) were found only at 2 degrees C and 25 degrees C, respectively, and not found at other incubation temperatures after 5 days. The impact of temperature on bacteria is complex, influencing both bacterial productivity and community composition. Path analysis of measurements of 24 streams and lakes sampled across a catchment 12 times in 4 years indicates variable timing and strength of correlation between temperature and bacterial production, possibly due to bacterial community differences between sites. As indicated by both field and laboratory experiments, shifts in dominant community members can occur on ecologically relevant time scales (days), and have important implications for understanding the relationship of bacterial diversity and function.


Applied and Environmental Microbiology | 2007

Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters.

Byron C. Crump; Cherie Peranteau; Barbara Beckingham; Jeffrey C. Cornwell

ABSTRACT Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms under sulfidic conditions.


The ISME Journal | 2013

Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin.

Caroline S Fortunato; Alexander Eiler; Joseph A. Needoba; Tawnya D. Peterson; Byron C. Crump

Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=−0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.

Collaboration


Dive into the Byron C. Crump's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Baross

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mary Doherty

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge