Byron C. H. Chu
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Byron C. H. Chu.
Biometals | 2010
Byron C. H. Chu; Alicia Garcia-Herrero; Ted H. Johanson; Karla D. Krewulak; Cheryl K. Y. Lau; R. Sean Peacock; Zoya Slavinskaya; Hans J. Vogel
Siderophores are biosynthetically produced and secreted by many bacteria, yeasts, fungi and plants, to scavenge for ferric iron (Fe3+). They are selective iron-chelators that have an extremely high affinity for binding this trivalent metal ion. The ferric ion is poorly soluble but it is the form of iron that is predominantly found in oxygenated environments. Siderophore uptake in bacteria has been extensively studied and over the last decade, detailed structural information for many of the proteins that are involved in their transport has become available. Specifically, numerous crystal structures for outer membrane siderophore transporters, as well as for soluble periplasmic siderophore-binding proteins, have been reported. Moreover, unique siderophore-binding proteins have recently been serendipitously discovered in humans, and the structures of some of their siderophore-complexes have been characterized. The binding pockets for different ferric-siderophores in these proteins have been described in great molecular detail. In addition to highlighting this structural information, in this review paper we will also briefly discuss the relevant chemical properties of iron, and provide a perspective on our current understanding of the human and bacterial iron uptake pathways. Potential clinical uses of siderophores will also be discussed. The emerging overall picture is that iron metabolism plays an extremely important role during bacterial infections. Because levels of free ferric iron in biological systems are always extremely low, there is serious competition for iron and for ferric-siderophores between pathogenic bacteria and the human or animal host.
PLOS Pathogens | 2009
María A. Llamas; Astrid M. van der Sar; Byron C. H. Chu; Marion Sparrius; Hans J. Vogel; Wilbert Bitter
Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen.
Journal of the American Chemical Society | 2010
Renee Otten; Byron C. H. Chu; Karla D. Krewulak; Hans J. Vogel; Frans A. A. Mulder
An NMR approach is described which yields the methyl resonance assignments of alanine, threonine, valine, leucine, and isoleucine residues in proteins with high sensitivity and excellent resolution. The method relies on protein samples produced by bacterial expression using [(1)H,(13)C]-D-glucose and approximately 100% D(2)O, which is cost-effective and ensures the isotopic enrichment of all possible methyl groups. Magnetization transfer throughout the methyl-containing side chains is possible with this labeling scheme due to the high level of deuteration along the amino acid side chain, coupled with the selection of the favorable CHD(2) methyl isotopomer for detection. In an application to the 34 kDa periplasmic binding protein FepB 164 out of 195 methyl groups (85%) were assigned sequence-specifically and stereospecifically. This percentage increases to 91% when taking into account that not all backbone assignments are available for this system. The remaining unassigned methyl groups belong to six leucine residues, caused by low cross-peak intensities, and four alanine residues due to degeneracy of the (13)C(alpha)/(13)C(beta) frequencies. Our results demonstrate that NMR spectroscopic investigations of protein structure, dynamics, and interactions can be extended to include all methyl-containing amino acids also for larger proteins.
Biometals | 2007
Byron C. H. Chu; R. Sean Peacock; Hans J. Vogel
TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B12 across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a ∼90 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22–283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second α-helix and the third β-strand of the antiparallel β-sheet. The fourth β-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins.
Journal of Biological Chemistry | 2014
Byron C. H. Chu; Renee Otten; Karla D. Krewulak; Frans A. A. Mulder; Hans J. Vogel
Background: FepB is a periplasmic binding protein that transports the catecholate siderophore enterobactin. Results: The solution NMR structures of apo- and holo-FepB were solved revealing a unique siderophore binding mechanism. Conclusion: Enterobactin binding involves the ordering of dynamic loop residues. Significance: The binding of enterobactin by FepB does not proceed by the typical Venus flytrap scheme. The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs.
Journal of Biological Chemistry | 2010
David I. Chan; Byron C. H. Chu; Cheryl K. Y. Lau; Howard N. Hunter; David M. Byers; Hans J. Vogel
Bacterial acyl carrier protein (ACP) is a highly anionic, 9 kDa protein that functions as a cofactor protein in fatty acid biosynthesis. Escherichia coli ACP is folded at neutral pH and in the absence of divalent cations, while Vibrio harveyi ACP, which is very similar at 86% sequence identity, is unfolded under the same conditions. V. harveyi ACP adopts a folded conformation upon the addition of divalent cations such as Ca2+ and Mg2+ and a mutant, A75H, was previously identified that restores the folded conformation at pH 7 in the absence of divalent cations. In this study we sought to understand the unique folding behavior of V. harveyi ACP using NMR spectroscopy and biophysical methods. The NMR solution structure of V. harveyi ACP A75H displays the canonical ACP structure with four helices surrounding a hydrophobic core, with a narrow pocket closed off from the solvent to house the acyl chain. His-75, which is charged at neutral pH, participates in a stacking interaction with Tyr-71 in the far C-terminal end of helix IV. pH titrations and the electrostatic profile of ACP suggest that V. harveyi ACP is destabilized by anionic charge repulsion around helix II that can be partially neutralized by His-75 and is further reduced by divalent cation binding. This is supported by differential scanning calorimetry data which indicate that calcium binding further increases the melting temperature of V. harveyi ACP A75H by ∼20 °C. Divalent cation binding does not alter ACP dynamics on the ps-ns timescale as determined by 15N NMR relaxation experiments, however, it clearly stabilizes the protein fold as observed by hydrogen-deuterium exchange studies. Finally, we demonstrate that the E. coli ACP H75A mutant is similarly unfolded as wild-type V. harveyi ACP, further stressing the importance of this particular residue for proper protein folding.
Journal of Biological Chemistry | 2013
Byron C. H. Chu; Timothy DeWolf; Hans J. Vogel
Background: HisJ is a bilobal periplasmic binding protein that mediates basic amino acid transport. Results: The apo-HisJ solution NMR structure was solved. The individual lobes of HisJ were isolated, and domain 1 binds histidine. Conclusion: Histidine binding at domain 1 initiates large conformational changes in HisJ. Significance: Intact hinge regions that bridge the two lobes of HisJ are critical for function. Escherichia coli HisJ is a type II periplasmic binding protein that functions to reversibly capture histidine and transfer it to its cognate inner membrane ABC permease. Here, we used NMR spectroscopy to determine the structure of apo-HisJ (26.5 kDa) in solution. HisJ is a bilobal protein in which domain 1 (D1) is made up of two noncontiguous subdomains, and domain 2 (D2) is expressed as the inner domain. To better understand the roles of D1 and D2, we have isolated and characterized each domain separately. Structurally, D1 closely resembles its homologous domain in apo- and holo-HisJ, whereas D2 is more similar to the holo-form. NMR relaxation experiments reveal that HisJ becomes more ordered upon ligand binding, whereas isolated D2 experiences a significant reduction in slower (millisecond to microsecond) motions compared with the homologous domain in apo-HisJ. NMR titrations reveal that D1 is able to bind histidine in a similar manner as full-length HisJ, albeit with lower affinity. Unexpectedly, isolated D1 and D2 do not interact with each other in the presence or absence of histidine, which indicates the importance of intact interdomain-connecting elements (i.e. hinge regions) for HisJ functioning. Our results shed light on the binding mechanism of type II periplasmic binding proteins where ligand is initially bound by D1, and D2 plays a supporting role in this dynamic process.
Biological Chemistry | 2011
Byron C. H. Chu; Hans J. Vogel
Metallomics | 2016
Sambuddha Banerjee; Subrata Paul; Leonard T. Nguyen; Byron C. H. Chu; Hans J. Vogel
Journal of Back and Musculoskeletal Rehabilitation | 2014
Byron C. H. Chu; Renee Otten; Karla D. Krewulak; Frans A. A. Mulder; Hans J. Vogel