Byron DeLaBarre
Agios Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Byron DeLaBarre.
Science | 2013
Fang Wang; Jeremy Travins; Byron DeLaBarre; Virginie Penard-Lacronique; Stefanie Schalm; Erica Hansen; Kimberly Straley; Andrew Kernytsky; Wei Liu; Camelia Gliser; Hua Yang; Stefan Gross; Erin Artin; Véronique Saada; Elena Mylonas; Cyril Quivoron; Janeta Popovici-Muller; Jeffrey O. Saunders; Francesco G. Salituro; Shunqi Yan; Stuart Murray; Wentao Wei; Yi Gao; Lenny Dang; Marion Dorsch; Sam Agresta; David P. Schenkein; Scott A. Biller; Shinsan M. Su; Stéphane de Botton
IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.
Chemistry & Biology | 2012
Charles Kung; Jeff Hixon; Sung Choe; Kevin Marks; Stefan Gross; Erin Murphy; Byron DeLaBarre; Giovanni Cianchetta; Shalini Sethumadhavan; Xiling Wang; Shunqi Yan; Yi Gao; Cheng Fang; Wentao Wei; Fan Jiang; Shaohui Wang; Kevin Qian; Jeffrey O. Saunders; Ed Driggers; Hin Koon Woo; Kaiko Kunii; Stuart Murray; Hua Yang; Katharine E. Yen; Wei Liu; Lewis C. Cantley; Matthew G. Vander Heiden; Shinsan M. Su; Shengfang Jin; Francesco G. Salituro
Proliferating tumor cells use aerobic glycolysis to support their high metabolic demands. Paradoxically, increased glycolysis is often accompanied by expression of the lower activity PKM2 isoform, effectively constraining lower glycolysis. Here, we report the discovery of PKM2 activators with a unique allosteric binding mode. Characterization of how these compounds impact cancer cells revealed an unanticipated link between glucose and amino acid metabolism. PKM2 activation resulted in a metabolic rewiring of cancer cells manifested by a profound dependency on the nonessential amino acid serine for continued cell proliferation. Induction of serine auxotrophy by PKM2 activation was accompanied by reduced carbon flow into the serine biosynthetic pathway and increased expression of high affinity serine transporters. These data support the hypothesis that PKM2 expression confers metabolic flexibility to cancer cells that allows adaptation to nutrient stress.
Biochemistry | 2011
Byron DeLaBarre; Stefan Gross; Cheng Fang; Yi Gao; Abhishek K. Jha; Fan Jiang; J Juanhua Song; Wentao Wei; Jonathan Hurov
Glutaminase (GLS1/2) catalyzes the conversion of L-glutamine to L-glutamate and ammonia. The level of a splice variant of GLS1 (GAC) is elevated in certain cancers, and GAC is specifically inhibited by bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethyl sulfide (BPTES). We report here the first full-length crystal structure of GAC in the presence and absence of BPTES molecules. Two BPTES molecules bind at an interface region of the GAC tetramer in a manner that appears to lock the GAC tetramer into a nonproductive conformation. The importance of these loops with regard to overall enzymatic activity of the tetramer was revealed by a series of GAC point mutants designed to create a BPTES resistant GAC.
Journal of Biological Chemistry | 2014
Mindy I. Davis; Stefan Gross; Min Shen; Kimberly Straley; Rajan Pragani; Wendy A. Lea; Janeta Popovici-Muller; Byron DeLaBarre; Erin Artin; Natasha Thorne; Douglas S. Auld; Zhuyin Li; Lenny Dang; Matthew B. Boxer; Anton Simeonov
Background: IDH1 R132H, implicated in glioblastoma and AML, produces the oncometabolite 2-HG. Results: A detailed binding mechanism of a small molecule inhibitor (ML309) is proposed. Conclusion: ML309 competes with α-KG but is uncompetitive with NADPH and rapidly and reversibly affects cellular 2-HG levels. Significance: Understanding IDH1 R132H inhibition sets the stage for targeting IDH1 R132H for the treatment of cancer. Two mutant forms (R132H and R132C) of isocitrate dehydrogenase 1 (IDH1) have been associated with a number of cancers including glioblastoma and acute myeloid leukemia. These mutations confer a neomorphic activity of 2-hydroxyglutarate (2-HG) production, and 2-HG has previously been implicated as an oncometabolite. Inhibitors of mutant IDH1 can potentially be used to treat these diseases. In this study, we investigated the mechanism of action of a newly discovered inhibitor, ML309, using biochemical, cellular, and biophysical approaches. Substrate binding and product inhibition studies helped to further elucidate the IDH1 R132H catalytic cycle. This rapidly equilibrating inhibitor is active in both biochemical and cellular assays. The (+) isomer is active (IC50 = 68 nm), whereas the (−) isomer is over 400-fold less active (IC50 = 29 μm) for IDH1 R132H inhibition. IDH1 R132C was similarly inhibited by (+)-ML309. WT IDH1 was largely unaffected by (+)-ML309 (IC50 >36 μm). Kinetic analyses combined with microscale thermophoresis and surface plasmon resonance indicate that this reversible inhibitor binds to IDH1 R132H competitively with respect to α-ketoglutarate and uncompetitively with respect to NADPH. A reaction scheme for IDH1 R132H inhibition by ML309 is proposed in which ML309 binds to IDH1 R132H after formation of the IDH1 R132H NADPH complex. ML309 was also able to inhibit 2-HG production in a glioblastoma cell line (IC50 = 250 nm) and had minimal cytotoxicity. In the presence of racemic ML309, 2-HG levels drop rapidly. This drop was sustained until 48 h, at which point the compound was washed out and 2-HG levels recovered.
Cancer Discovery | 2017
Katharine E. Yen; Jeremy Travins; Fang Wang; Muriel D. David; Erin Artin; Kimberly Straley; Anil Padyana; Stefan Gross; Byron DeLaBarre; Erica Tobin; Yue Chen; Raj Nagaraja; Sung Choe; Lei Jin; Zenon D. Konteatis; Giovanni Cianchetta; Jeffrey O. Saunders; Francesco G. Salituro; Cyril Quivoron; Paule Opolon; Olivia Bawa; Véronique Saada; Angelo Paci; Sophie Broutin; Olivier Bernard; Stéphane de Botton; Benoit Marteyn; Monika Pilichowska; Yingxia Xu; Cheng Fang
Somatic gain-of-function mutations in isocitrate dehydrogenases (IDH) 1 and 2 are found in multiple hematologic and solid tumors, leading to accumulation of the oncometabolite (R)-2-hydroxyglutarate (2HG). 2HG competitively inhibits α-ketoglutarate-dependent dioxygenases, including histone demethylases and methylcytosine dioxygenases of the TET family, causing epigenetic dysregulation and a block in cellular differentiation. In vitro studies have provided proof of concept for mutant IDH inhibition as a therapeutic approach. We report the discovery and characterization of AG-221, an orally available, selective, potent inhibitor of the mutant IDH2 enzyme. AG-221 suppressed 2HG production and induced cellular differentiation in primary human IDH2 mutation-positive acute myeloid leukemia (AML) cells ex vivo and in xenograft mouse models. AG-221 also provided a statistically significant survival benefit in an aggressive IDH2R140Q-mutant AML xenograft mouse model. These findings supported initiation of the ongoing clinical trials of AG-221 in patients with IDH2 mutation-positive advanced hematologic malignancies.Significance: Mutations in IDH1/2 are identified in approximately 20% of patients with AML and contribute to leukemia via a block in hematopoietic cell differentiation. We have shown that the targeted inhibitor AG-221 suppresses the mutant IDH2 enzyme in multiple preclinical models and induces differentiation of malignant blasts, supporting its clinical development. Cancer Discov; 7(5); 478-93. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Shih et al., p. 494This article is highlighted in the In This Issue feature, p. 443.
Chemistry & Biology | 2014
Byron DeLaBarre; Jonathan Hurov; Giovanni Cianchetta; Stuart Murray; Lenny Dang
Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.
Blood | 2017
Charles Kung; Jeff Hixon; Penelope Kosinski; Giovanni Cianchetta; Gavin Histen; Yue Chen; Collin Hill; Stefan Gross; Yaguang Si; Kendall Johnson; Byron DeLaBarre; Zhiyong Luo; Zhiwei Gu; Gui Yao; Huachun Tang; Cheng Fang; Yingxia Xu; Xiaobing Lv; Scott A. Biller; Shin-San Michael Su; Hua Yang; Janeta Popovici-Muller; Francesco G. Salituro; Lee Silverman; Lenny Dang
Pyruvate kinase (PK) deficiency is a rare genetic disease that causes chronic hemolytic anemia. There are currently no targeted therapies for PK deficiency. Here, we describe the identification and characterization of AG-348, an allosteric activator of PK that is currently in clinical trials for the treatment of PK deficiency. We demonstrate that AG-348 can increase the activity of wild-type and mutant PK enzymes in biochemical assays and in patient red blood cells treated ex vivo. These data illustrate the potential for AG-348 to restore the glycolytic pathway activity in patients with PK deficiency and ultimately lead to clinical benefit.
Molecular Cancer Therapeutics | 2013
Fang Wang; Jeremy Travins; Byron DeLaBarre; Virginie Penard-Lacronique; Stefanie Schalm; Erica Hansen; Kimberly Straley; Andrew Kernytsky; Wei Liu; Camelia Gliser; Hua Yang; Stefan Gross; Erin Artin; Véronique Saada; Elena Mylonas; Cyril Quivoron; Janeta Popovici-Muller; Jeffrey O. Saunders; Frank Salituro; Shunqi Yan; Stuart Murray; Wentao Wei; Yi Gao; Lenny Dang; Marion Dorsch; Samuel V. Agresta; David P. Schenkein; Scott A. Biller; Shinsan Su; S. de Botton
Mutations in the isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) genes are present in ∼20% of acute myeloid leukemia, and cause a neomorphic enzyme activity that results in the production of 2-hydroxyglutarate (2HG). Mutational and epigenetic profiling of a large patient cohort of acute myeloid leukemia (AML) has revealed that IDH1/2-mutant AMLs display global DNA hypermethylation and impaired hematopoietic differentiation. To further investigate the intrinsic effect of 2HG on hematopoietic proliferation and differentiation, we transfected an erythroleukemia cell line (TF-1) with either IDH1 or IDH2 mutant alleles. These cells overexpress the mutant enzyme, have high levels of 2HG, and exhibit GM-CSF independent growth. Consistent with clinical observations, overexpression of the IDH mutant proteins led to hypermethylation of both histones and DNA. These results suggest that mutations in IDH1/2 could lead to epigenetic rewiring of cells that could facilitate the gain of function phenotype. We are currently studying the global and specific effects of IDH1/2 mutant overexpression to gain a broader understanding of the biological consequence of the IDH1/2 gain of function mutations. We have also generated mutation selective molecules that are capable of inhibiting IDHm enzymes. Upon compound treatment in vitro, we are able to reverse hypermethylation of both histones and DNA and induce cellular differentiation in IDHm cell lines and primary human IDHm AML patient samples(1, 2). These data suggest that an inhibitor of IDH1/2 mutations could correct the altered gene expression patterns seen in IDH1/2 mutant AML tumors leading to a profound effect on hematopoietic differentiation, proliferation and tumor growth. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):PL02-04. Citation Format: F. Wang, J. Travins, B. DeLaBarre, V. Penard-Lacronique, S. Schalm, E. Hansen, K. Straley, A. Kernytsky, W. Liu, C. Gliser, H. Yang, S. Gross, E. Artin, V Saada, E. Mylonas, C. Quivoron, J. Popovici-Muller, J. O. Saunders, F. G. Salituro, S. Yan, S. Murray, W. Wei, Y. Gao, L. Dang, M. Dorsch, S. Agresta, D. P. Schenkein, S. A. Biller, S. M. Su, S. de Botton, Katharine E. Yen. IDH mutations and tumorigenicity. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr PL02-04.
Cancer Research | 2012
Byron DeLaBarre; Jonathan Hurov; Stefan Gross
Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Glutaminase (GLS1/2) catalyzes the conversion of L-glutamine to L-glutamate and ammonia. A splice variant of GLS1 (GAC) is elevated in certain cancers and is specifically inhibited by bis-2-(5-phenylacetimido-1,2,4, thiadiazol-2-yl)ethyl sulfide (BPTES). We describe here the first full length crystal structure of GAC both in the presence and absence of BPTES molecules. Two BPTES molecules bind at a interface region of the GAC tetramer in a manner which appears to lock the GAC tetramer into a non-productive conformation. The importance of these loops with regards to overall enzymatic activity of the tetramer was revealed by a series of GAC point mutants designed to create a BPTES resistant GAC. An unintended but nonetheless interesting transfer of phosphate activation activity was observed upon inserting key residues from GLS-2 into GLS-1. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3237. doi:1538-7445.AM2012-3237
Cancer and Metabolism | 2014
Danielle Ulanet; Abhishek K. Jha; Kiley Couto; Sung Choe; Amanda Wang; Hin-Koon Woo; Mya Steadman; Byron DeLaBarre; Stefan Gross; Edward M. Driggers; Marion Dorsch; Jonathan Hurov