Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Chang Suh is active.

Publication


Featured researches published by Byung-Chang Suh.


Annual review of biophysics | 2008

PIP2 is a necessary cofactor for ion channel function: How and why?

Byung-Chang Suh; Bertil Hille

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a minority phospholipid of the inner leaflet of plasma membranes. Many plasma membrane ion channels and ion transporters require PIP2 to function and can be turned off by signaling pathways that deplete PIP2. This review discusses the dependence of ion channels on phosphoinositides and considers possible mechanisms by which PIP2 and analogues regulate ion channel activity.


Neuron | 2002

Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis.

Byung-Chang Suh; Bertil Hille

Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with an EC(50) of approximately 0.5 mM. Substitution of nonhydrolyzable ATP analogs for ATP slowed or prevented recovery. ADPbetaS but not ADP also prevented the recovery. Receptor-mediated inhibition was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP(2)) was blocked by lipid kinase inhibitors. Lipid phosphorylation by PI 4-kinase is required for recovery from muscarinic modulation of M current.


Current Opinion in Neurobiology | 2005

Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate

Byung-Chang Suh; Bertil Hille

Phosphatidylinositol 4,5-bisphosphate is a signaling phospholipid of the plasma membrane that has a dynamically changing concentration. In addition to being the precursor of inositol trisphosphate and diacylglycerol, it complexes with and regulates many cytoplasmic and membrane proteins. Recent work has characterized the regulation of a wide range of ion channels by phosphatidylinositol 4,5-bisphosphate, helping to redefine the role of this lipid in cells and in neurobiology. In most cases, phosphatidylinositol 4,5-bisphosphate increases channel activity, and its hydrolysis by phospholipase C reduces channel activity.


Science | 2006

Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels

Byung-Chang Suh; Takanari Inoue; Tobias Meyer; Bertil Hille

To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C–mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.


The Journal of General Physiology | 2005

Phospholipase C in Living Cells: Activation, Inhibition, Ca2+ Requirement, and Regulation of M Current

Lisa F. Horowitz; Wiebke Hirdes; Byung-Chang Suh; Donald W. Hilgemann; Ken Mackie; Bertil Hille

We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin–sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor–mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.


The Journal of General Physiology | 2004

Regulation of KCNQ2/KCNQ3 Current by G Protein Cycling: The Kinetics of Receptor-mediated Signaling by Gq

Byung-Chang Suh; Lisa F. Horowitz; Wiebke Hirdes; Ken Mackie; Bertil Hille

Receptor-mediated modulation of KCNQ channels regulates neuronal excitability. This study concerns the kinetics and mechanism of M1 muscarinic receptor–mediated regulation of the cloned neuronal M channel, KCNQ2/KCNQ3 (Kv7.2/Kv7.3). Receptors, channels, various mutated G-protein subunits, and an optical probe for phosphatidylinositol 4,5-bisphosphate (PIP2) were coexpressed by transfection in tsA-201 cells, and the cells were studied by whole-cell patch clamp and by confocal microscopy. Constitutively active forms of Gαq and Gα11, but not Gα13, caused a loss of the plasma membrane PIP2 and a total tonic inhibition of the KCNQ current. There were no further changes upon addition of the muscarinic agonist oxotremorine-M (oxo-M). Expression of the regulator of G-protein signaling, RGS2, blocked PIP2 hydrolysis and current suppression by muscarinic stimulation, confirming that the Gq family of G-proteins is necessary. Dialysis with the competitive inhibitor GDPβS (1 mM) lengthened the time constant of inhibition sixfold, decreased the suppression of current, and decreased agonist sensitivity. Removal of intracellular Mg2+ slowed both the development and the recovery from muscarinic suppression. When combined with GDPβS, low intracellular Mg2+ nearly eliminated muscarinic inhibition. With nonhydrolyzable GTP analogs, current suppression developed spontaneously and muscarinic inhibition was enhanced. Such spontaneous suppression was antagonized by GDPβS or GTP or by expression of RGS2. These observations were successfully described by a kinetic model representing biochemical steps of the signaling cascade using published rate constants where available. The model supports the following sequence of events for this Gq-coupled signaling: A classical G-protein cycle, including competition for nucleotide-free G-protein by all nucleotide forms and an activation step requiring Mg2+, followed by G-protein–stimulated phospholipase C and hydrolysis of PIP2, and finally PIP2 dissociation from binding sites for inositol lipid on the channels so that KCNQ current was suppressed. Further experiments will be needed to refine some untested assumptions.


Journal of Immunology | 2001

P2X7 Nucleotide Receptor Mediation of Membrane Pore Formation and Superoxide Generation in Human Promyelocytes and Neutrophils

Byung-Chang Suh; Jong-So Kim; Uk Namgung; Hyunjung Ha; Kyong-Tai Kim

The P2X7 receptor, which induces cation channel opening imparting significant permeability to Ca2+ and pore formation with changes in the plasma membrane potential, has been known to be rather restrictedly expressed in cells of the macrophage lineage including dendrites, mature macrophages, and microglial cells. However, we show here that the P2X7 receptor is also expressed in cells of granulocytic lineage such as HL-60 promyelocytes, granulocytic differentiated cells, and neutrophils. Exposure of these cells to 2′,3′-O-(4-benzoyl)benzoyl-ATP (BzATP) triggered intracellular Ca2+ rise through the mediation of phospholipase C-independent and suramin-sensitive pathways. BzATP also induced depolarization of the plasma membrane in the absence of extracellular Ca2+, whereas it hyperpolarized the cells in the presence of external Ca2+, probably in part through the activation of Ca2+-activated K+ channels. However, the hyperpolarization phenomenon was markedly attenuated in differentiated HL-60 cells and neutrophils. RT-PCR and Northern blot analysis revealed the presence of P2X7 receptors on both HL-60 and neutrophil-like cells. This was further confirmed by pore formation through which the uptake of Lucifer yellow and YO-PRO1 occurred on BzATP treatment. BzATP stimulated in a concentration-dependent manner the production of superoxide in differentiated HL-60 cells via a pathway partially dependent on extracellular Ca2+. Moreover, in human neutrophils, BzATP was a more effective inducer of superoxide generation than PMA. Taken together, this is a first demonstration of the expression of P2X7 receptors on neutrophils, which shows that the receptor is functionally involved in the defense mechanism by activation of the respiratory burst pathway.


Neuron | 2010

Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate

Byung-Chang Suh; Karina Leal; Bertil Hille

Modulation of voltage-gated Ca(2+) channels controls activities of excitable cells. We show that high-voltage activated Ca(2+) channels are regulated by membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) with different sensitivities. Plasma membrane PIP(2) depletion by rapamycin-induced translocation of an inositol lipid 5-phosphatase or by a voltage-sensitive 5-phosphatase (VSP) suppresses Ca(V)1.2 and Ca(V)1.3 channel currents by approximately 35% and Ca(V)2.1 and Ca(V)2.2 currents by 29% and 55%, respectively. Other Ca(V) channels are less sensitive. Inhibition is not relieved by strong depolarizing prepulses. It changes the voltage dependence of channel gating little. Recovery of currents from inhibition needs intracellular hydrolysable ATP, presumably for PIP(2) resynthesis. When PIP(2) is increased by overexpressing PIP 5-kinase, activation and inactivation of Ca(V)2.2 current slow and voltage-dependent gating shifts to slightly higher voltages. Thus, endogenous membrane PIP(2) supports high-voltage activated L-, N-, and P/Q-type Ca(2+) channels, and stimuli that activate phospholipase C deplete PIP(2) and reduce those Ca(2+) channel currents.


Biochimica et Biophysica Acta | 2015

Phosphoinositides regulate ion channels

Bertil Hille; Eamonn J. Dickson; Martin Kruse; Oscar Vivas; Byung-Chang Suh

Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.


The Journal of Physiology | 2010

Phosphoinositides: lipid regulators of membrane proteins

Björn H. Falkenburger; Jill B. Jensen; Eamonn J. Dickson; Byung-Chang Suh; Bertil Hille

Phosphoinositides are a family of minority acidic phospholipids in cell membranes. Their principal role is instructional: they interact with proteins. Each cellular membrane compartment uses a characteristic species of phosphoinositide. This signature phosphoinositide attracts a specific complement of functionally important, loosely attached peripheral proteins to that membrane. For example, the phosphatidylinositol 4,5‐bisphosphate (PIP2) of the plasma membrane attracts phospholipase C, protein kinase C, proteins involved in membrane budding and fusion, proteins regulating the actin cytoskeleton, and others. Phosphoinositides also regulate the activity level of the integral membrane proteins. Many ion channels of the plasma membrane need the plasma‐membrane‐specific PIP2 to function. Their activity decreases when the abundance of this lipid falls, as for example after activation of phospholipase C. This behaviour is illustrated by the suppression of KCNQ K+ channel current by activation of M1 muscarinic receptors; KCNQ channels require PIP2 for their activity. In summary, phosphoinositides contribute to the selection of peripheral proteins for each membrane and regulate the activity of the integral proteins.

Collaboration


Dive into the Byung-Chang Suh's collaboration.

Top Co-Authors

Avatar

Kyong-Tai Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bertil Hille

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Dong-Il Kim

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hae-Jin Kweon

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cheon-Gyu Park

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill B. Jensen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Deok-Jin Jang

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Dongil Keum

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ihn-Soon Lee

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge