Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Dong Kim is active.

Publication


Featured researches published by Byung-Dong Kim.


Nature Genetics | 2014

Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species

Seungill Kim; Minkyu Park; Seon-In Yeom; Yong Min Kim; Je Min Lee; Hyun Ah Lee; Eunyoung Seo; Jae Young Choi; Kyeongchae Cheong; Ki-Tae Kim; Kyongyong Jung; Gir Won Lee; Sang Keun Oh; Chungyun Bae; Saet Byul Kim; Hye Young Lee; Shin Young Kim; Myung Shin Kim; Byoung Cheorl Kang; Yeong Deuk Jo; Hee Bum Yang; Hee Jin Jeong; Won-Hee Kang; Jin Kyung Kwon; Chanseok Shin; Jae Yun Lim; June Hyun Park; Jin Hoe Huh; June Sik Kim; Byung-Dong Kim

Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.


Comparative and Functional Genomics | 2005

The Tomato Sequencing Project, the First Cornerstone of the International Solanaceae Project (SOL)

Lukas A. Mueller; Steven D. Tanksley; James J. Giovannoni; Joyce Van Eck; Stephen Stack; Doil Choi; Byung-Dong Kim; Mingsheng Chen; Zhukuan Cheng; Chuanyou Li; Hongqing Ling; Yongbiao Xue; Graham B. Seymour; Gerard J. Bishop; Glenn J. Bryan; Rameshwar Sharma; J. P. Khurana; Akhilesh K. Tyagi; Debasis Chattopadhyay; Nagendra K. Singh; Willem J. Stiekema; Pim Lindhout; Taco Jesse; René Klein Lankhorst; Mondher Bouzayen; Daisuke Shibata; Satoshi Tabata; Antonio Granell; Miguel A. Botella; Giovanni Giuliano

The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, The Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation’. The goal of this grassroots initiative, launched in November 2003, is to establish a network of information, resources and scientists to ultimately tackle two of the most significant questions in plant biology and agriculture: (1) How can a common set of genes/proteins give rise to a wide range of morphologically and ecologically distinct organisms that occupy our planet? (2) How can a deeper understanding of the genetic basis of plant diversity be harnessed to better meet the needs of society in an environmentally friendly and sustainable manner? The Solanaceae and closely related species such as coffee, which are included in the scope of the SOL project, are ideally suited to address both of these questions. The first step of the SOL project is to use an ordered BAC approach to generate a high quality sequence for the euchromatic portions of the tomato as a reference for the Solanaceae. Due to the high level of macro and micro-synteny in the Solanaceae the BAC-by-BAC tomato sequence will form the framework for shotgun sequencing of other species. The starting point for sequencing the genome is BACs anchored to the genetic map by overgo hybridization and AFLP technology. The overgos are derived from approximately 1500 markers from the tomato high density F2-2000 genetic map (http://sgn.cornell.edu/). These seed BACs will be used as anchors from which to radiate the tiling path using BAC end sequence data. Annotation will be performed according to SOL project guidelines. All the information generated under the SOL umbrella will be made available in a comprehensive website. The information will be interlinked with the ultimate goal that the comparative biology of the Solanaceae—and beyond—achieves a context that will facilitate a systems biology approach.


Plant Molecular Biology | 2007

Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.)

Jeong Gu Kang; Byung-Dong Kim

Cytoplasmic male sterility (CMS) in plants is known to be associated with novel open reading frames (ORFs) that result from recombination events in the mitochondrial genome. In this study Southern and Northern blot analyses using several mitochondrial DNA probes were conducted to detect the presence of differing band patterns between male fertile and CMS lines of chili pepper (Capsicum annuum L.). In the CMS pepper, a novel ORF, termed orf456, was found at the 3′-end of the coxII gene. Western blot analysis revealed the expression of an approximately 17-kDa product in the CMS line, and the intensity of expression of this protein was severely reduced in the restorer pepper line. To investigate the functional role of the ORF456 protein in plant mitochondria, we carried out two independent experiments to transform Arabidopsis with a mitochondrion-targeted orf456 gene construct by Agrobacterium-mediated transformation. About 45% of the T1 transgenic population showed the male-sterile phenotype and no seed set. Pollen grains from semi-sterile T1 plants were observed to have defects on the exine layer and vacuolated pollen phenotypes. It is concluded that this newly discovered orf456 may represent a strong candidate gene – from among the many CMS-associated mitochondrial genes – for determining the male-sterile phenotype of CMS in chili pepper.


Theoretical and Applied Genetics | 2001

A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.)

June Huh; Byoung-Cheorl Kang; Seok-Hyeon Nahm; Syng Wook Kim; K. S. Ha; M. H. Lee; Byung-Dong Kim

Abstrat The color of mature pepper fruit is determined by the composition of carotenoids. The fruit color of red pepper is genetically determined by three loci, y, c1, and c2. We have been developing a genetic map of hot pepper using RFLP and AFLP markers in the F2 population of an interspecific cross between Capsicum annuum cv TF68 and Capsicum chinense cv Habanero. The color of the ripe fruit of TF68 is red and Habanero is orange. The red color is dominant over orange in the F1 and the locus controlling this character has been marked in our SNU Linkage Group 7. To identify the gene or markers tightly linked to the red/orange locus, several candidate genes involved in the carotenoid biosynthesis pathway, namely FPS, GGPS, PSY, PDS, LCY and CCS, were examined. One of the candidate genes, phytoene synthase, cosegregated completely with fruit color in the F2 population. QTL analysis of the pigment content of F2 individuals quantified by HPLC also indicated that phytoene synthase is the locus responsible for the development of fruit color. The color, pigment content and genetic behavior of Habanero also suggest that phytoene synthase may be responsible for the c2 gene discriminating between red and orange cultivars.


Plant Journal | 2010

A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death.

Brendan S. Kelley; Sang-Jik Lee; Cynthia M. B. Damasceno; Suma Chakravarthy; Byung-Dong Kim; Gregory B. Martin; Jocelyn K. C. Rose

Evasion or active suppression of host defenses are critical strategies employed by biotrophic phytopathogens and hemibiotrophs whose infection mechanism includes sequential biotrophic and necrotrophic stages. Although defense suppression by secreted effector proteins has been well studied in bacteria, equivalent systems in fungi and oomycetes are poorly understood. We report the characterization of SNE1 (suppressor of necrosis 1), a gene encoding a secreted protein from the hemibiotrophic oomycete Phytophthora infestans that is specifically expressed at the transcriptional level during biotrophic growth within the host plant tomato (Solanum lycopersicum). Using transient expression assays, we show that SNE1 suppresses the action of secreted cell death-inducing effectors from Phytophthora that are expressed during the necrotrophic growth phase, as well as programmed cell death mediated by a range of Avr-R protein interactions. We also report that SNE1 contains predicted NLS motifs and translocates to the plant nucleus in transient expression studies. A conceptual model is presented in which the sequential coordinated secretion of antagonistic effectors by P. infestans first suppresses, but then induces, host cell death, thereby providing a highly regulated means to control the transition from biotrophy to necrotrophy.


Cancer Research | 2008

Capsiate, a Nonpungent Capsaicin-Like Compound, Inhibits Angiogenesis and Vascular Permeability via a Direct Inhibition of Src Kinase Activity

Bo-Jeong Pyun; Sun Choi; Yoonji Lee; Tae-Woong Kim; Jeong-Ki Min; Yonghak Kim; Byung-Dong Kim; Jeong-Han Kim; Tae-Yoon Kim; Young-Myeong Kim; Young-Guen Kwon

Capsiate, a nonpungent capsaicin analogue, and its dihydroderivative dihydrocapsiate are the major capsaicinoids of the nonpungent red pepper cultivar CH-19 Sweet. In this study, we report the biological actions and underlying molecular mechanisms of capsiate on angiogenesis and vascular permeability. In vitro, capsiate and dihydrocapsiate inhibited vascular endothelial growth factor (VEGF)-induced proliferation, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. They also inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessels in the mouse Matrigel plug assay in response to VEGF. Moreover, both compounds blocked VEGF-induced endothelial permeability and loss of vascular endothelial (VE)-cadherin-facilitated endothelial cell-cell junctions. Importantly, capsiate suppressed VEGF-induced activation of Src kinase and phosphorylation of its downstream substrates, such as p125(FAK) and VE-cadherin, without affecting autophosphorylation of the VEGF receptor KDR/Flk-1. In vitro kinase assay and molecular modeling studies revealed that capsiate inhibits Src kinase activity via its preferential docking to the ATP-binding site of Src kinase. Taken together, these results suggest that capsiate could be useful for blocking pathologic angiogenesis and vascular permeability caused by VEGF.


Molecules and Cells | 2009

Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences

Heung-Ryul Lee; Ik-Hyun Bae; Soung-Woo Park; Hyoun-Joung Kim; Woong-Ki Min; Jung-Heon Han; Ki-Taek Kim; Byung-Dong Kim

Map-based cloning to find genes of interest, markerassisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum ‘TF68’ and C. chinense ‘Habanero’) and two intraspecific (C. annuum ‘CM334’ and C. annuum ‘Chilsungcho’) populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum ‘CM334’. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.


Free Radical Biology and Medicine | 2010

Capsiate inhibits ultraviolet B-induced skin inflammation by inhibiting Src family kinases and epidermal growth factor receptor signaling.

Eun-Jung Lee; Myung-Shin Jeon; Byung-Dong Kim; Jeong-Han Kim; Young-Guen Kwon; Hyangkyu Lee; Yun Sang Lee; Jeong-Hee Yang; Tae-Yoon Kim

Capsiate, one of the major capsaicinoids, is nonpungent and present in sweet pepper. We investigated the effects of capsiate on the ultraviolet B (UVB)-induced inflammatory response in skin and its molecular mechanisms. Capsiate-pretreated human keratinocytes inhibited intracellular reactive oxygen species (ROS), which activate the mitogen-activated protein kinase and nuclear factor-kappaB (NF-kappaB) pathways. Therefore, we determined the effects of capsiate on these pathways. Capsiate inhibited UVB-induced cyclooxygenase-2 (COX-2) expression, extracellular signal-related kinase 1/2 phosphorylation, nuclear translocation of NF-kappaB, and the expression of proinflammatory cytokines and potent angiogenic factors, including vascular endothelial cell growth factor and matrix metalloproteinase-2 (MMP-2) and MMP-9. In addition, capsiate inhibited UVB-induced epidermal growth factor receptor (EGFR) activation, which reduces the levels of proinflammatory cytokines and angiogenic factors. We also investigated the photoprotective effects of capsiate in vivo. Topical treatment with capsiate significantly decreased UVB-induced skin damage and inhibited the expression of COX-2, proinflammatory cytokines, and angiogenic factors, including platelet/endothelial cell adhesion molecule-1 and intercellular adhesion molecule-1. Inhibition of Src kinase activity and ROS may inhibit the EGFR activation. Therefore, capsiate may protect the skin from UVB-induced adverse effects and these results provide a molecular basis for understanding its effects on inflammation and angiogenesis.


Current Genetics | 2006

The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper ( Capsicum annuum L.)

Byung-Dong Kim

The mitochondrial atp6 gene in male fertile (N) and CMS (S) pepper has previously been compared and was found to be present in two copies (Kim et al. in J Kor Soc Hort Sci 42:121–127 2001). In the current study, these atp6 copies were amplified by an inverse PCR technique, and the coding region as well as the 5′ and 3′ flanking regions were sequenced. The atp6 copies in CMS pepper were detected as one intact gene and one pseudogene, truncated at the 3′ coding region. When the atp6 genes in pepper were compared to other plant species, pepper, potato, and petunia all possessed a sequence of 12 identical amino acids at the 3′ extended region, which was considered a hallmark of the Solanaceae family. Northern blot analysis showed differences in mRNA band patterns between CMS and restorer lines, indicating that atp6 gene is one of the candidates for CMS in pepper.


BMC Genomics | 2011

Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements

Minkyu Park; Sung-Hwan Jo; Jin-Kyung Kwon; Jongsun Park; Jong Hwa Ahn; Seungill Kim; Yong-Hwan Lee; Tae-Jin Yang; Cheol-Goo Hur; Byoung-Cheorl Kang; Byung-Dong Kim; Doil Choi

BackgroundAmong the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato.ResultsFor sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila) were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation.ConclusionsCompared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.

Collaboration


Dive into the Byung-Dong Kim's collaboration.

Top Co-Authors

Avatar

Jung-Heon Han

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Doil Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Heung-Ryul Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Seon-In Yeom

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won-Hee Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyoun-Joung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-Sung Shin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Woong-Ki Min

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge