Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung Geun Ha is active.

Publication


Featured researches published by Byung Geun Ha.


Journal of Nutritional Biochemistry | 2011

The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss.

Tae-Ho Kim; Ji Won Jung; Byung Geun Ha; Jung Min Hong; Eui Kyun Park; Hyun-Ju Kim; Shin-Yoon Kim

Flavonoids, a group of polyphenolic compounds abundant in plants, are known to prevent bone loss in ovariectomized (OVX) animal models. Inhibition of osteoclast differentiation and bone resorption is considered as an effective therapeutic approach in the treatment of postmenopausal bone loss. Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vivo and vitro. In this study, we found that luteolin markedly decreased the differentiation of both bone marrow mononuclear cells and Raw264.7 cells into osteoclasts. Luteolin also inhibited the bone resorptive activity of differentiated osteoclasts. We further investigated the effects of luteolin on ovariectomy-induced bone loss using micro-computed tomography, biomechanical tests and serum markers assay for bone remodeling. Oral administration of luteolin (5 and 20 mg/kg per day) to OVX mice caused significant increase in bone mineral density and bone mineral content of trabecular and cortical bones in the femur as compared to those of OVX controls, and prevented decreases of bone strength indexes induced by OVX surgery. Serum biochemical markers assays revealed that luteolin prevents OVX-induced increases in bone turnover. These data strongly suggest that luteolin has the potential for prevention of bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function.


Proteomics | 2008

Proteomic profile of osteoclast membrane proteins: identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion.

Byung Geun Ha; Jung Min Hong; Ju-Yong Park; Mi-Hyun Ha; Tae-Ho Kim; Je-Yeol Cho; Hyun-Mo Ryoo; Je-Yong Choi; Hong-In Shin; So Young Chun; Shin-Yoon Kim; Eui Kyun Park

Osteoclast formation and bone resorption are multiple processes that involve the participation of specialized membrane structures and their associated proteins. In this study, we used an MS to analyze the profile of proteins associated with osteoclast membranes and focused on the function of channel proteins in osteoclast differentiation and function. We filtered out with a SEQUEST score greater than 10 and a peptide hit number of more than 2, resulting in the identification of 499 proteins that were commonly found in both macrophages and osteoclasts, 96 proteins selectively found in osteoclasts, and 179 proteins selectively found in macrophages. The proteins that were selectively found in osteoclasts were classified based on their localizations: plasma membrane (17%), ER/Golgi and lysosome/endosome (15%), mitochondrion (18%), nucleus (13%), cytosol (19%), and unknown (18%). Proteins associated with osteoclast function such as v‐ATPase, IGF2R, TRAP, and cathepsin K were found in osteoclasts as previously shown. We found several ion channel proteins such as Ank and Nhedc2 and signaling molecules such as Dock5 and RAB‐10 in osteoclasts. Inhibition of the Na+/H+ exchanger family by amiloride suppressed RANKL‐induced osteoclast fusion and bone resorption. In addition, shRNA for Nhedc2 inhibited osteoclast differentiation. Our results provide a proteomic profile of osteoclast membrane proteins and identify Nhedc2, which is probably associated with proton transport in osteoclasts, as a regulator of osteoclast function.


Marine Drugs | 2013

Anti-Diabetic Effect of Balanced Deep-Sea Water and Its Mode of Action in High-Fat Diet Induced Diabetic Mice

Byung Geun Ha; Eun Ji Shin; Jung-Eun Park; Yun Hee Shon

In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 500–2000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake.


Obesity | 2014

Effects of balanced deep-sea water on adipocyte hypertrophy and liver steatosis in high-fat, diet-induced obese mice

Byung Geun Ha; Jung-Eun Park; Eun Ji Shin; Yun Hee Shon

To determine the effects of balanced deep‐sea water (BDSW) on adipocyte hypertrophy and liver steatosis in high‐fat diet (HFD)‐induced obese C57BL/6J mice.


PLOS ONE | 2014

Modulation of Glucose Metabolism by Balanced Deep-Sea Water Ameliorates Hyperglycemia and Pancreatic Function in Streptozotocin-Induced Diabetic Mice

Byung Geun Ha; Jung-Eun Park; Eun Ji Shin; Yun Hee Shon

The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.


PLOS ONE | 2015

Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function

Byung Geun Ha; Jung-Eun Park; Hyun-Jung Cho; Yun Hee Shon

The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action.


Oncology Letters | 2015

Effect of Cnidii Rhizoma on nitric oxide production and invasion of human colorectal adenocarcinoma HT-29 cells.

Kyung Soo Nam; Byung Geun Ha; Yun Hee Shon

Colorectal adenocarcinoma is the most common type of gastrointestinal cancer. Colon adenocarcinoma is a major health problem worldwide due to the high prevalence and mortality rates associated with the disease. The majority of colorectal carcinomas are adenocarcinomas, which originate from the epithelial cells of the colorectal mucosa. HT-29 cells, which originate from human colon adenocarcinoma, are used as an in vitro model to investigate the effect of malignant transformation on the expression of cellular constituents and functions of the intestinal epithelium. Nitric oxide (NO) is a signaling molecule, which is involved in inflammation and carcinogenesis. It has been reported that enhanced inducible NO synthase (iNOS) activity and the resulting NO concentrations in human colon carcinoma contribute to tumor progression and vascular invasion. The present study investigates the effect of pro-inflammatory cytokine-induced nitric oxide (NO) production and iNOS expression on the invasion of human colorectal adenocarcinoma HT-29 cells, and the effect of extract from Cnidii Rhizoma on NO production and the invasiveness of HT-29 cells. Treatment of HT-29 cells with cytokines, 100 U/ml interferon γ, 10 ng/ml interleukin-1 α and 25 ng/ml tumor necrosis factor α was found to increase NO production. Pretreatment of the cells with Cnidii Rhizoma (0.1–5 mg/ml) resulted in an inhibition of cytokine-induced NO production and iNOS expression. The invasiveness of HT-29 cells through Matrigel was significantly increased by treatment with cytokines. Cnidii Rhizoma inhibited the invasiveness of cytokine-treated HT-29 cells through the Matrigel-coated membrane in a concentration-dependent manner. Matrix metalloproteinase (MMP) activity in HT-29 cells increased following the treatment with cytokines, and pretreatment of the cells with Cnidii Rhizoma inhibited cytokine-induced MMP-2 activity. These results provide sufficient information for the further development of Cnidii Rhizoma as an antitumor metastatic agent for the treatment of colon cancer.


International Journal of Oncology | 2015

Inhibitory effects of proton beam irradiation on integrin expression and signaling pathway in human colon carcinoma HT29 cells

Byung Geun Ha; Jung-Eun Park; Hyun-Jung Cho; Young-Bin Lim; Yun Hee Shon

Proton radiotherapy has been established as a highly effective modality used in the local control of tumor growth. Although proton radiotherapy is used worldwide to treat several types of cancer clinically with great success due to superior targeting and energy deposition, the detailed regulatory mechanisms underlying the functions of proton radiation are not yet well understood. Accordingly, in the present study, to assess the effects of proton beam on integrin-mediated signaling pathways, we investigated the expression of integrins related to tumor progression and integrin trafficking, and key molecules related to cell adhesion, as well as examining phosphorylation of signaling molecules involved in integrin-mediated signaling pathways. Proton beam irradiation inhibited the increase in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced integrin β1 protein expression and the gene expression of members of the integrin family, such as α5β1, α6β4, αvβ3, and αvβ6 in human colorectal adenocarcinoma HT-29 cells. Simultaneously, the gene expression of cell adhesion molecules, such as FAK and CDH1, and integrin trafficking regulators, such as RAB4, RAB11, and HAX1, was decreased by proton beam irradiation. Moreover, proton beam irradiation decreased the phosphorylation of key molecules involved in integrin signaling, such as FAK, Src, and p130Cas, as well as PKC and MAPK, which are known as promoters of cell migration, while increased the phosphorylation of AMPK and the gene expression of Rab IP4 involved in the inhibition of cell adhesion and cell spreading. Taken together, our findings suggest that proton beam irradiation can inhibit metastatic potential, including cell adhesion and migration, by modulating the gene expression of molecules involved in integrin trafficking and integrin-mediated signaling, which are necessary for tumor progression.


Marine Biotechnology | 2016

Stimulatory Effect of Balanced Deep-Sea Water Containing Chitosan Oligosaccharides on Glucose Uptake in C2C12 Myotubes.

Byung Geun Ha; Jung-Eun Park; Yun Hee Shon

Deep-sea water (DSW) and chitosan oligosaccharides (COS) have recently drawn much attention because of their potential medical and pharmaceutical applications. Balanced DSW (BDSW) was prepared by mixing DSW mineral extracts and desalinated water. This study investigated the effects of BDSW, COS, and BDSW containing COS on glucose uptake and their mode of action in mature C2C12 myotubes. BDSW and COS increased glucose uptake in a dose-dependent manner. BDSW containing COS synergistically increased glucose uptake; this was dependent on the activation of insulin receptor substrate 1 and protein kinase C in insulin-dependent signaling pathways as well as liver kinase B1, AMP-activated protein kinase, and mammalian target of rapamycin in insulin-independent signaling pathways. Quantitative real-time polymerase chain reaction revealed that the expressions of the following genes related to glucose uptake were elevated: glucose transporter 4 (GLUT4), insulin-responsive aminopeptidase, and vesicle-associated membrane protein 2 for abundant proteins of GLUT4 storage vesicles (GSVs); syntaxin 4 and soluble N-ethylmaleimide-sensitive factor attachment protein 23 for trafficking between the plasma membrane and GSVs; and syntaxin 6 and syntaxin 16 for trafficking between GSVs and the trans-Golgi network. Taken together, these results suggest BDSW containing COS has a greater stimulatory effect on glucose uptake than BDSW or COS alone. Moreover, this effect is mediated by the stimulation of diverse signaling pathways via the activation of main signaling molecules related to GSV trafficking.


Biomedicine & Pharmacotherapy | 2016

Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes

Byung Geun Ha; Deok-Soo Moon; Hyeon Ju Kim; Yun Hee Shon

Recent studies showed that deficiencies of essential minerals including Mg, Ca, and K, and trace minerals including Se, Zn, and V, have implications for the development, prevention, and treatment of several chronic diseases including obesity and type 2 diabetes. Our previous studies revealed that balanced deep-sea water (BDSW), which is composed of desalinated water enriched with Mg and Ca, has potential as a treatment for diabetes and obesity. In this study, to determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, expression of key transcription factors and mitochondria-specific genes, phosphorylation of signaling molecules associated with mitochondrial biogenesis, and mitochondrial function in 3T3-L1 preadipocytes. BDSW increased mitochondrial biogenesis in a dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances expression of PGC1-α, NRF1, and TFAM genes. Upregulation of these genes was supported by increased mitochondria staining, CytC oxidase activity, and AMPK phosphorylation. The stimulatory effect of BDSW on mitochondrial biogenesis and function suggests a novel mechanism for BDSW-induced anti-diabetic and anti-obesity action.

Collaboration


Dive into the Byung Geun Ha's collaboration.

Top Co-Authors

Avatar

Yun Hee Shon

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jung-Eun Park

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Eun Ji Shin

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Eui Kyun Park

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Jung Cho

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jung Min Hong

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Shin-Yoon Kim

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Tae-Ho Kim

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Hong-In Shin

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-Ju Kim

Kyungpook National University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge