Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Gon Ryu is active.

Publication


Featured researches published by Byung-Gon Ryu.


Bioresource Technology | 2013

Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity.

Wasif Farooq; Young-Chul Lee; Byung-Gon Ryu; Byung-Hyuk Kim; Hee-Sik Kim; Yoon-E Choi; Ji-Won Yang

A cultivation system in the two-stage photoautotrophic-photoheterotrophic/mixotrophic mode was adapted to maximize lipid productivity of two freshwater strains of Chlorella sp. grown in brewery wastewater (BWW). The endogenous Chlorella sp. isolated from BWW had a higher growth rate than wild-type Chlorella vulgaris (UTEX-265) while C. vulgaris (UTEX-265) had a higher maximal biomass and lipid contents than that of endogenous Chlorella sp., resulting in more than 90% of the inorganic nutrients in both total nitrogen (TN) and phosphorus (TP) was removed during the first stage in the two-stage photoautotrophic-photoheterotrophic mode in each Chlorella sp. The maximal biomass and lipid contents of C. vulgaris (UTEX-265) for single stage photoautotrophic cultivation were 1.5 g/L and 18%, respectively. Importantly, during two-stage photoautotrophic-photoheterotrophic cultivation for C. vulgaris (UTEX-265), the biomass was increased to 3.5 g/L, and the lipid productivity was increased from 31.1 to 108.0mg/L day.


Bioresource Technology | 2013

High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry.

Byung-Gon Ryu; Jungmin Kim; Kyochan Kim; Yoon-E Choi; Jong-In Han; Ji-Won Yang

Waste spent yeast from brewery industry was used as a sole growth substrate to grow an oleaginous yeast Cryptococcus curvatus for the purpose of biodiesel production. Approximately 7 g/l/d of biomass productivity was obtained using only spent yeast (30 g/l) without additional nutrients and pretreatment of any kind. To make best use of available nutrients in the spent yeast, stepwise cultivation was carried out in a batch culture mode and the highest biomass and lipid content, which were 50.4 g/l and 37.7%, respectively, were obtained at 35:1 of C/N ratio. Lipid from C. curvatus was found to be a quality-sufficient source of oil as a transportation fuel in terms of cetane, iodine values, and oxidation stability, although the values of cold filter plugging point were less desirable. Economic evaluation revealed that the use of the spent yeast could significantly reduce the unit cost of yeast-based biodiesel production.


Bioresource Technology | 2013

Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101

Byung-Gon Ryu; Kyochan Kim; Jungmin Kim; Jong-In Han; Ji-Won Yang

In the present study, spent yeast from a brewery was used as the growth substrate for the docosahexaenoic acid (DHA)-rich microalga, Aurantiochytrium sp. KRS101. A significant biomass yield (6.69 g/l/d) was obtained using only spent yeast as the growth substrate, with simple stirring as pretreatment. Maximization of nutrient utilization through the use of stepwise cultivation increased the yield to 31.8 g/l of biomass. DHA constituted 38.2% (w/w) of the total fatty acids, and the highest DHA productivity was observed when the C/N ratio was 20:1 (w/w). Spent yeast thus served as a good growth substrate for the production of DHA. Economic assessment revealed that stepwise cultivation using spent yeast as either the sole growth substrate or as a nutrient source could substantially reduce the production cost of microalgal DHA.


Bioresource Technology | 2012

Continuous microalgae recovery using electrolysis: Effect of different electrode pairs and timing of polarity exchange

Jungmin Kim; Byung-Gon Ryu; Kyochan Kim; Bo-Kyong Kim; Jong-In Han; Ji-Won Yang

Microalgae have great potential as a feedstock for biofuel production. Continuous operation is an important benefit of the continuous electrolytic microalgae (CEM) harvest system, but it is necessary to optimize cultivability and recovery efficiency in order to improve overall performance. Two pairs of best-candidate electrodes for polarity exchange (PE) were examined to improve these two key factors: (i) aluminum and dimensionally stable anode (Al-DSA), and (ii) Al-platinum (Al-Pt). Al-DSA was better than Al-Pt because it led to less cell damage and was less expensive. Moreover, cell viability and recovery were improved by optimizing the timing of PE. A P1:P2 ratio of 1:1.5 at 5min and 1:1.2 at 10min yielded the best results, with greatly reduced electricity consumption and enhanced cell viability and recovery. The CEM harvest system appears to be a well-suited option for the harvest of microalgae for biofuel production.


Bioresource Technology | 2013

A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid

Kyochan Kim; Eun Jung Kim; Byung-Gon Ryu; Soojung Park; Yoon-E Choi; Ji-Won Yang

The biology of Aurantiochytrium sp. KRS101 was thoroughly investigated to enhance its production of biodiesel and docosahexaenoic acid (DHA). Nutrients and salinity were optimized to prevent biomass loss due to cell rupture. Calculation of yield coefficients showed that nitrogen was mostly responsible for the early stage of cell growth or division, whereas carbon was necessary for the entire process of cell development, particularly cell enlargement during late stages. Using these distinctive yield coefficients, a modified fed-batch cultivation method was designed, resulting in increases in palmitic acid (PA) and DHA production of up to 137% and 29%, respectively. This modified fed-batch cultivation method, using appropriate supplies of nitrogen and carbon, may improve the yields of PA and DHA, thus expanding the biotechnological applications of Aurantiochytrium sp. KRS101.


Bioresource Technology | 2014

Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel

Byung-Gon Ryu; Jungmin Kim; Gursong Yoo; Woong Kim; Jong-In Han; Ji-Won Yang

In this work, a method for simultaneously degrading the toxic pollutant, thiocyanate, and producing microalgal lipids using mixed microbial communities was developed. Aerobic activated sludge was used as the seed culture and thiocyanate was used as the sole nitrogen source. Two cultivation methods were sequentially employed: a lithoautotrophic mode and a photoautotrophic mode. Thiocyanate hydrolysis and a nitrification was found to occur under the first (lithoautotrophic) condition, while the oxidized forms of nitrogen were assimilated by the photoautotrophic consortium and lipids were produced under the second condition. The final culture exhibited good settling efficiency (∼ 70% settling over 10 min), which can benefit downstream processing. The highest CO2 fixation rate and lipid productivity were observed with 2.5% and 5% CO2, respectively. The proposed integrated algal-bacterial system appears to be a feasible and even beneficial option for thiocyanate treatment and production of microbial lipids.


Bioresource Technology | 2015

A comprehensive study on algal–bacterial communities shift during thiocyanate degradation in a microalga-mediated process

Byung-Gon Ryu; Woong Kim; Kibok Nam; Sungwhan Kim; Bong-Soo Lee; Min S. Park; Ji-Won Yang

Changes in algal and bacterial communities during thiocyanate (SCN(-)) decomposition in a microalga-mediated process were studied. Pyrosequencing indicated that Thiobacillus bacteria and Micractinium algae predominated during SCN(-) hydrolysis, even after its complete degradation. Principal components analysis and evenness profiles (based on the Pareto-Lorenz curve) suggested that the changes in the bacterial communities were driven by nitrogen and sulfur oxidation, pH changes, and photoautotrophic conditions. The populations of predominant microalgae remained relatively stable during SCN(-) hydrolysis, but the proportion of bacteria - especially nitrifying bacteria - fluctuated. Thus, the initial microalgal population may be crucial in determining which microorganisms dominate when the preferred nitrogen source becomes limited. The results also demonstrated that microalgae and SCN(-)-hydrolyzing bacteria can coexist, that microalgae can be effectively used with these bacteria to completely treat SCN(-), and that the structure of the algal-bacterial community is more stable than the community of nitrifying bacteria alone during SCN(-) degradation.


Korean Journal of Chemical Engineering | 2014

Quantitative analysis of microbial community structure in two-phase anaerobic digesters treating food wastewater

Woong Kim; Byung-Gon Ryu; Sungwhan Kim; Sung-Woon Heo; Dong-Hyun Kim; Jungmin Kim; Haechan Jo; Jong-Hee Kwon; Ji-Won Yang

An acidogenic reactor with a 0.5-L working volume and a methanogenic digester with a 5-L of working volume were operated for 150 days on a continuous mode to investigate the structure of a microbial community during food wastewater treatment. During the steady state of anaerobic digestion, volatile solids (VS) removal efficiency in the pilot plant was approximately 65%. The bacterial population was higher than any other methanogens detected during the entire anaerobic process and treatment of raw food wastewater. Methanomicrobiales (MMB), Methanosarcinales (MSL), and Methanobacteriales (MBT) were detected during digestion. The methanogenic population present in the acidogenic reactor was directly affected by the archaeal community in raw food wastewater. However, the shift of microbial community in the methanogenic digester was relatively gradual. The performance of methanogenic digester might be more related to the change of microbial metabolism affected by the physicochemical properties of the input substrate.


Bioresource Technology | 2015

Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions

Byung-Gon Ryu; Woong Kim; Sung-Woon Heo; Dong-Hyun Kim; Gang-Guk Choi; Ji-Won Yang

This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge.


Bioresource Technology | 2017

Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids

Byung-Gon Ryu; Jungmin Kim; Jong-In Han; Ji Won Yang

This study examined the feasibility of using an algal-bacterial process for removal of phenol and NH4+-N from differently diluted coke wastewater with simultaneous production of biomass. Under illumination, microalgal-bacterial (MSB) cultures performed complete phenol degradation at all dilutions of coke wastewater while sole microalgal culture (MSA) degraded a maximum of 27.3% of phenol (initial concentration: 24.0mgL-1) from 5-fold diluted wastewater. Furthermore, the MSB culture had the highest rate of NH4+-N removal (8.3mgL-1d-1) and fatty acid production (20mgL-1d-1) which were 2.3- and 1.5-fold higher than those observed in the MSA cultures, probably due to decreases in toxic organic pollutants. Multivariate analyses indicated that co-cultivation of activated sludge was directly correlated with the elevated removals of phenol and NH4+-N. In the presence of sludge, adequate dilution of the coke wastewater can maximize the effect of bacteria on NH4+-N removal and biomass production.

Collaboration


Dive into the Byung-Gon Ryu's collaboration.

Top Co-Authors

Avatar

Woong Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoon-E Choi

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge