Byung-Hak Song
Chungbuk National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Byung-Hak Song.
Journal of Virology | 2008
Jeong-Min Kim; Sang-Im Yun; Byung-Hak Song; Youn-Soo Hahn; Chan-Hee Lee; Hyun-Woo Oh; Young-Min Lee
ABSTRACT The prM protein of Japanese encephalitis virus (JEV) contains a single potential N-linked glycosylation site, N15-X16-T17, which is highly conserved among JEV strains and closely related flaviviruses. To investigate the role of this site in JEV replication and pathogenesis, we manipulated the RNA genome by using infectious JEV cDNA to generate three prM mutants (N15A, T17A, and N15A/T17A) with alanine substiting for N15 and/or T17 and one mutant with silent point mutations introduced into the nucleotide sequences corresponding to all three residues in the glycosylation site. An analysis of these mutants in the presence or absence of endoglycosidases confirmed the addition of oligosaccharides to this potential glycosylation site. The loss of prM N glycosylation, without significantly altering the intracellular levels of viral RNA and proteins, led to an ≈20-fold reduction in the production of extracellular virions, which had protein compositions and infectivities nearly identical to those of wild-type virions; this reduction occurred at the stage of virus release, rather than assembly. This release defect was correlated with small-plaque morphology and an N-glycosylation-dependent delay in viral growth. A more conservative mutation, N15Q, had the same effect as N15A. One of the four prM mutants, N15A/T17A, showed an additional defect in virus growth in mosquito C6/36 cells but not human neuroblastoma SH-SY5Y or hamster BHK-21 cells. This cell type dependence was attributed to abnormal N-glycosylation-independent biogenesis of prM. In mice, the elimination of prM N glycosylation resulted in a drastic decrease in virulence after peripheral inoculation. Overall, our findings indicate that this highly conserved N-glycosylation motif in prM is crucial for multiple stages of JEV biology: prM biogenesis, virus release, and pathogenesis.
Journal of Neuroimmunology | 2017
Byung-Hak Song; Sang-Im Yun; Michael Woolley; Young-Min Lee
Zika virus (ZIKV), a mosquito-borne positive-stranded RNA virus of the family Flaviviridae (genus Flavivirus), is now causing an unprecedented large-scale outbreak in the Americas. Historically, ZIKV spread eastward from equatorial Africa and Asia to the Pacific Islands during the late 2000s to early 2010s, invaded the Caribbean and Central and South America in 2015, and reached North America in 2016. Although ZIKV infection generally causes no symptoms or only a mild self-limiting illness, it has recently been linked to a rising number of severe neurological diseases, including microcephaly and Guillain-Barré syndrome. Because of the continuous geographic expansion of both the virus and its mosquito vectors, ZIKV poses a serious threat to public health around the globe. However, there are no vaccines or antiviral therapies available against this pathogen. This review summarizes a fast-growing body of literature on the history, epidemiology, transmission, and clinical presentation of ZIKV and highlights the urgent need for the development of efficient control strategies for this emerging pathogen.
Journal of Virology | 2009
Sang-Im Yun; Yu-Jeong Choi; Byung-Hak Song; Young-Min Lee
ABSTRACT The positive-strand RNA genome of Japanese encephalitis virus (JEV) terminates in a highly conserved 3′-noncoding region (3′NCR) of six domains (V, X, I, II-1, II-2, and III in the 5′-to-3′ direction). By manipulating the JEV genomic RNA, we have identified important roles for RNA elements present within the 574-nucleotide 3′NCR in viral replication. The two 3′-proximal domains (II-2 and III) were sufficient for RNA replication and virus production, whereas the remaining four (V, X, I, and II-1) were dispensable for RNA replication competence but required for maximal replication efficiency. Surprisingly, a lethal mutant lacking all of the 3′NCR except domain III regained viability through pseudoreversion by duplicating an 83-nucleotide sequence from the 3′-terminal region of the viral open reading frame. Also, two viable mutants displayed severe genetic instability; these two mutants rapidly developed 12 point mutations in domain II-2 in the mutant lacking domains V, X, I, and II-1 and showed the duplication of seven upstream sequences of various sizes at the junction between domains II-1 and II-2 in the mutant lacking domains V, X, and I. In all cases, the introduction of these spontaneous mutations led to an increase in RNA production that paralleled the level of protein accumulation and virus yield. Interestingly, the mutant lacking domains V, X, I, and II-1 was able to replicate in hamster BHK-21 and human neuroblastoma SH-SY5Y cells but not in mosquito C6/36 cells, indicating a cell type-specific restriction of its viral replication. Thus, our findings provide the basis for a detailed map of the 3′ cis-acting elements in JEV genomic RNA, which play an essential role in viral replication. They also provide experimental evidence for the function of 3′ direct repeat sequences and suggest possible mechanisms for the emergence of these sequences in the 3′NCR of JEV and perhaps in other flaviviruses.
Journal of Microbiology | 2012
Byung-Hak Song; Gil-Nam Yun; Jin-Kyoung Kim; Sang-Im Yun; Young-Min Lee
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a major cause of acute encephalitis, a disease of significance for global public health. In the absence of antiviral therapy to treat JEV infection, vaccination is the most effective method of preventing the disease. In JE-endemic areas, the most widely used vaccine to date is SA14-14-2, a live-attenuated virus derived from its virulent parent SA14. In this study, we describe the biological properties of SA14-14-2, both in vitro and invivo, and report the genetic characteristics of its genomic RNA. In BHK-21 (hamster kidney) cells, SA14-14-2 displayed a slight delay in plaque formation and growth kinetics when compared to a virulent JEV strain, CNU/LP2, with no decrease in maximum virus production. The delay in viral growth was also observed in two other cell lines, SH-SY5Y (human neuroblastoma) and C6/36 (mosquito larva), which are potentially relevant to JEV pathogenesis and transmission. In 3-week-old ICR mice, SA14-14-2 did not cause any symptoms or death after either intracerebral or peripheral inoculation with a maximum dose of up to 1.5×103 plaque-forming units (PFU) per mouse. The SA14-14-2 genome consisted of 10977 nucleotides, one nucleotide longer than all the previously reported genomes of SA14-14-2, SA14 and two other SA14-derived attenuated viruses. This difference was due to an insertion of one G nucleotide at position 10701 in the 3 noncoding region. Also, we noted a significant number of nucleotide and/or amino acid substitutions throughout the genome of SA14-14-2, except for the prM protein-coding region, that differed from SA14 and/or the other two attenuated viruses. Our results, together with others’, provide a foundation not only for the study of JEV virulence but also for the development of new and improved vaccines for JEV.
PLOS Pathogens | 2014
Sang-Im Yun; Byung-Hak Song; Jin-Kyoung Kim; Gil-Nam Yun; Eun-Young Lee; Long Li; Richard J. Kuhn; Michael G. Rossmann; John D. Morrey; Young-Min Lee
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other encephalitic flaviviruses.
Genome Announcements | 2016
Sang-Im Yun; Byung-Hak Song; Jordan C. Frank; Justin G. Julander; Irina A. Polejaeva; Christopher J. Davies; Kenneth L. White; Young-Min Lee
ABSTRACT Here, we report the 10,807-nucleotide-long consensus RNA genome sequences of three spatiotemporally distinct and genetically divergent Zika virus strains, with the functionality of their genomic sequences substantiated by reverse genetics: MR-766 (African lineage, Uganda, 1947), P6-740 (Asian lineage, Malaysia, 1966), and PRVABC-59 (Asian lineage-derived American strain, Puerto Rico, 2015).
Journal of General Virology | 2012
Tae Hee Lee; Byung-Hak Song; Sang-Im Yun; Young-Min Lee; Michael S. Diamond; Kyung Min Chung
Despite a resurgence of flavivirus infections worldwide, no approved therapeutic agent exists for any member of the genus. While cross-reactive antibodies with therapeutic potential against flaviviruses have been generated, the majority of them are anti-E antibodies with the potential to cause antibody-dependent enhancement of flavivirus infection and disease. We described previously mAbs against the non-structural NS1 protein of the West Nile virus (WNV) that were protective in mice when administered pre- or post-infection of WNV. Here, we demonstrate that one of these mAbs (16NS1) cross-reacted with Japanese encephalitis virus (JEV) and exhibited protective activity against a lethal JEV infection. Overlapping peptide mapping analysis combined with site-specific mutations identified a novel epitope ¹¹⁶KAWGKSILFA¹²⁵ and critical amino acid residues (¹¹⁸W and ¹²²I) for 16NS1 mAb binding. These results may facilitate the development of a broadly therapeutic mAb that lacks enhancing potential and/or subunit-based vaccine against flaviviruses that target the NS1 protein.
Journal of Visualized Experiments | 2015
Sang-Im Yun; Byung-Hak Song; Jin-Kyoung Kim; Young-Min Lee
Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase.
Journal of Microbiology | 2011
Byung-Hak Song; Jeong-Min Kim; Jin-Kyoung Kim; Han-Saem Jang; Gil-Nam Yun; Eun-Jin Choi; Jae-Young Song; Sang-Im Yun; Young-Min Lee
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, is one of the most common and economically important swine pathogens. Although both live-attenuated and killed-inactivated vaccines against the virus have been available for a decade, PRRSV is still a major problem in the swine industry worldwide. To explore the possibility of producing single-round infectious PRRSV replicon particles as a potential vaccine strategy, we have now generated two necessary components: 1) a stable cell line (BHK/Sinrepl9/PRRSV-N) that constitutively expresses the viral nucleocapsid (N) protein localized to the cytoplasm and the nucleolus and 2) a PRRSV replicon vector (pBAC/PRRSV/Replicon-AN) with a 177-nucleotide deletion, removing the 3′-half portion of ORF7 in the viral genome, from which the self-replicating propagation-defective replicon RNAs were synthesized in vitro by SP6 polymerase run-off transcription. Transfection of this replicon RNA into N protein-expressing BHK-21 cells led to the secretion of infectious particles that packaged the replicon RNA, albeit with a low production efficiency of 0.4 × 102 to 1.1 × 102 infectious units/ml; the produced particles had only single-round infectivity with no cell-to-cell spread. This trans-complementation system for PRRSV provides a useful platform for studies to define the packaging signals and motifs present within the viral genome and N protein, respectively, and to develop viral replicon-based antiviral vaccines that will stop the infection and spread of this pathogen.
Viruses | 2018
Sang-Im Yun; Byung-Hak Song; Jordan C. Frank; Justin G. Julander; Aaron L. Olsen; Irina A. Polejaeva; Christopher J. Davies; Kenneth L. White; Young-Min Lee
Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.