Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Kwan Cho is active.

Publication


Featured researches published by Byung-Kwan Cho.


Nature Biotechnology | 2009

The transcription unit architecture of the Escherichia coli genome

Byung-Kwan Cho; Karsten Zengler; Yu Qiu; Young Seoub Park; Eric M. Knight; Christian L. Barrett; Yuan Gao; Bernhard O. Palsson

Bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5′ sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5′ untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli

Byung-Kwan Cho; Christian L. Barrett; Eric M. Knight; Young Seoub Park; Bernhard O. Palsson

Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.


Genome Research | 2008

Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts

Byung-Kwan Cho; Eric M. Knight; Christian L. Barrett; Bernhard O. Palsson

We determined the genome-wide distribution of the nucleoid-associated protein Fis in Escherichia coli using chromatin immunoprecipitation coupled with high-resolution whole genome-tiling microarrays. We identified 894 Fis-associated regions across the E. coli genome. A significant number of these binding sites were found within open reading frames (33%) and between divergently transcribed transcripts (5%). Analysis indicates that A-tracts and AT-tracts are an important signal for preferred Fis-binding sites, and that A(6)-tracts in particular constitute a high-affinity signal that dictates Fis phasing in stretches of DNA containing multiple and variably spaced A-tracts and AT-tracts. Furthermore, we find evidence for an average of two Fis-binding regions per supercoiling domain in the chromosome of exponentially growing cells. Transcriptome analysis shows that approximately 21% of genes are affected by the deletion of fis; however, the changes in magnitude are small. To address the differential Fis bindings under growth environment perturbation, ChIP-chip analysis was performed using cells grown under aerobic and anaerobic growth conditions. Interestingly, the Fis-binding regions are almost identical in aerobic and anaerobic growth conditions-indicating that the E. coli genome topology mediated by Fis is superficially identical in the two conditions. These novel results provide new insight into how Fis modulates DNA topology at a genome scale and thus advance our understanding of the architectural bases of the E. coli nucleoid.


Applied and Environmental Microbiology | 2004

ω-amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of β-amino acids and amines

Hyungdon Yun; Seongyop Lim; Byung-Kwan Cho; Byung-Gee Kim

ABSTRACT Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion.


Proceedings of the National Academy of Sciences of the United States of America | 2010

RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media

Tom M Conrad; Michael Frazier; Andrew R. Joyce; Byung-Kwan Cho; Eric M. Knight; Nathan E. Lewis; Robert Landick; Bernhard O. Palsson

Specific small deletions within the rpoC gene encoding the β′-subunit of RNA polymerase (RNAP) are found repeatedly after adaptation of Escherichia coli K-12 MG1655 to growth in minimal media. Here we present a multiscale analysis of these mutations. At the physiological level, the mutants grow 60% faster than the parent strain and convert the carbon source 15–35% more efficiently to biomass, but grow about 30% slower than the parent strain in rich medium. At the molecular level, the kinetic parameters of the mutated RNAP were found to be altered, resulting in a 4- to 30-fold decrease in open complex longevity at an rRNA promoter and a ∼10-fold decrease in transcriptional pausing, with consequent increase in transcript elongation rate. At a genome-scale, systems biology level, gene expression changes between the parent strain and adapted RNAP mutants reveal large-scale systematic transcriptional changes that influence specific cellular processes, including strong down-regulation of motility, acid resistance, fimbria, and curlin genes. RNAP genome-binding maps reveal redistribution of RNAP that may facilitate relief of a metabolic bottleneck to growth. These findings suggest that reprogramming the kinetic parameters of RNAP through specific mutations allows regulatory adaptation for optimal growth in new environments.


Applied and Environmental Microbiology | 2007

Cloning and characterization of a novel beta-transaminase from Mesorhizobium sp. strain LUK: a new biocatalyst for the synthesis of enantiomerically pure beta-amino acids.

Juhan Kim; Dohyun Kyung; Hyungdon Yun; Byung-Kwan Cho; Joo-Hyun Seo; Min-Ho Cha; Byung-Gee Kim

ABSTRACT A novel β-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the β-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The β-transaminase showed higher activities toward d-β-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The β-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and α-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of β-aminocarboxylic acids in the active site is reversed relative to that of α-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the β-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic α-keto acids such as α-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the α-carboxylate group of the α-amino acids and α-keto acids. The β-transaminase was used for the asymmetric synthesis of enantiomerically pure β-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor.


Nucleic Acids Research | 2011

The PurR regulon in Escherichia coli K-12 MG1655

Byung-Kwan Cho; Stephen Federowicz; Mallory Embree; Young-Seoub Park; Donghyuk Kim; Bernhard O. Palsson

The PurR transcription factor plays a critical role in transcriptional regulation of purine metabolism in enterobacteria. Here, we elucidate the role of PurR under exogenous adenine stimulation at the genome-scale using high-resolution chromatin immunoprecipitation (ChIP)–chip and gene expression data obtained under in vivo conditions. Analysis of microarray data revealed that adenine stimulation led to changes in transcript level of about 10% of Escherichia coli genes, including the purine biosynthesis pathway. The E. coli strain lacking the purR gene showed that a total of 56 genes are affected by the deletion. From the ChIP–chip analysis, we determined that over 73% of genes directly regulated by PurR were enriched in the biosynthesis, utilization and transport of purine and pyrimidine nucleotides, and 20% of them were functionally unknown. Compared to the functional diversity of the regulon of the other general transcription factors in E. coli, the functions and size of the PurR regulon are limited.


Nature Chemical Biology | 2012

Deciphering the transcriptional regulatory logic of amino acid metabolism

Byung-Kwan Cho; Stephen Federowicz; Young-Seoub Park; Karsten Zengler; Bernhard O. Palsson

Although metabolic networks have been reconstructed on a genome scale, the corresponding reconstruction and integration of governing transcriptional regulatory networks has not been fully achieved. Here we reconstruct such an integrated network for amino acid metabolism in Escherichia coli. Analysis of ChIP-chip and gene expression data for the transcription factors ArgR, Lrp and TrpR showed that 19 out of 20 amino acid biosynthetic pathways are either directly or indirectly controlled by these regulators. Classifying the regulated genes into three functional categories of transport, biosynthesis and metabolism leads to the elucidation of regulatory motifs that constitute the integrated networks basic building blocks. The regulatory logic of these motifs was determined on the basis of relationships between transcription factor binding and changes in the amount of transcript in response to exogenous amino acids. Remarkably, the resulting logic shows how amino acids are differentiated as signaling and nutrient molecules, revealing the overarching regulatory principles of the amino acid stimulon.


BMC Biology | 2014

Genome-scale reconstruction of the sigma factor network in Escherichia coli : topology and functional states

Byung-Kwan Cho; Donghyuk Kim; Eric M. Knight; Karsten Zengler; Bernhard O. Palsson

BackgroundAt the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a σ-factor to recognize the genomic location at which the process initiates. Although the crucial role of σ-factors has long been appreciated and characterized for many individual promoters, we do not yet have a genome-scale assessment of their function.ResultsUsing multiple genome-scale measurements, we elucidated the network of σ-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 σ-factor-specific promoters corresponding to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative σ-factors (the σ70 and σ38 regulons), confirming the competition model of σ substitution and negative regulation by alternative σ-factors. Comparison with σ-factor binding in Klebsiella pneumoniae showed that transcriptional regulation of conserved genes in closely related species is unexpectedly divergent.ConclusionsThe reconstructed network reveals the regulatory complexity of the promoter architecture in prokaryotic genomes, and opens a path to the direct determination of the systems biology of their transcriptional regulatory networks.


Nature Communications | 2016

The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2)

Yujin Jeong; Ji-Nu Kim; Min Woo Kim; Giselda Bucca; Suhyung Cho; Yeo Joon Yoon; Byung-Gee Kim; Jung-Hye Roe; Sun Chang Kim; Colin P. Smith; Byung-Kwan Cho

Individual Streptomyces species have the genetic potential to produce a diverse array of natural products of commercial, medical and veterinary interest. However, these products are often not detectable under laboratory culture conditions. To harness their full biosynthetic potential, it is important to develop a detailed understanding of the regulatory networks that orchestrate their metabolism. Here we integrate nucleotide resolution genome-scale measurements of the transcriptome and translatome of Streptomyces coelicolor, the model antibiotic-producing actinomycete. Our systematic study determines 3,570 transcription start sites and identifies 230 small RNAs and a considerable proportion (∼21%) of leaderless mRNAs; this enables deduction of genome-wide promoter architecture. Ribosome profiling reveals that the translation efficiency of secondary metabolic genes is negatively correlated with transcription and that several key antibiotic regulatory genes are translationally induced at transition growth phase. These findings might facilitate the design of new approaches to antibiotic discovery and development.

Collaboration


Dive into the Byung-Kwan Cho's collaboration.

Top Co-Authors

Avatar

Byung-Gee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Suhyung Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge