Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung Min Chung is active.

Publication


Featured researches published by Byung Min Chung.


Current Opinion in Cell Biology | 2013

Networking galore: intermediate filaments and cell migration

Byung Min Chung; Jeremy D. Rotty; Pierre A. Coulombe

Intermediate filaments (IFs) are assembled from a diverse group of evolutionarily conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. IFs are involved in multiple cellular processes that are crucial for the maintenance of cell and tissue integrity and the response and adaptation to various stresses, as conveyed by the broad array of crippling clinical disorders caused by inherited mutations in IF coding sequences. Accordingly, the expression, assembly, and organization of IFs are tightly regulated. Migration is a fitting example of a cell-based phenomenon in which IFs participate as both effectors and regulators. With a particular focus on vimentin and keratin, we here review how the contributions of IFs to the cells mechanical properties, to cytoarchitecture and adhesion, and to regulatory pathways collectively exert a significant impact on cell migration.


Nature Structural & Molecular Biology | 2012

Structural basis for heteromeric assembly and perinuclear organization of keratin filaments

Chang Hun Lee; Min Sung Kim; Byung Min Chung; Daniel J. Leahy; Pierre A. Coulombe

There is as yet no high-resolution data regarding the structure and organization of keratin intermediate filaments, which are obligate heteropolymers providing vital mechanical support in epithelia. We report the crystal structure of interacting 2B regions from the central coiled-coil domains of keratins 5 and 14 (K5 and K14), expressed in progenitor keratinocytes of epidermis. The interface of the K5–K14 coiled-coil heterodimer has asymmetric salt bridges, hydrogen bonds and hydrophobic contacts, and its surface exhibits a notable charge polarization. A trans-dimer homotypic disulfide bond involving Cys367 in K14s stutter region occurs in the crystal and in skin keratinocytes, where it is concentrated in a keratin filament cage enveloping the nucleus. We show that K14-Cys367 impacts nuclear shape in cultured keratinocytes and that mouse epidermal keratinocytes lacking K14 show aberrations in nuclear structure, highlighting a new function for keratin filaments.


Oncogene | 2009

The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants

Byung Min Chung; Manjari Dimri; Manju George; Alagarsamy Lakku Reddi; Gengsheng Chen; Vimla Band

Non-small cell lung cancer (NSCLC)-associated epidermal growth factor receptor (EGFR) mutants are constitutively active and induce ligand-independent transformation in non-malignant cell lines. We investigated the possibility that the ability of mutant EGFRs to transform cells reflects a constitutive cooperativity with Src using a system in which the overexpression of mutant, but not wild-type, EGFR induced anchorage-independent cell growth. Src was constitutively activated and showed enhanced interaction with mutant EGFRs, suggesting that constitutive EGFR–Src cooperativity may contribute to mutant EGFR-mediated oncogenesis. Indeed, the mutant EGFR-mediated cell transformation was inhibited by Src- as well as EGFR-directed inhibitors. Importantly, a tyrosine to phenylalanine mutation of the major Src phosphorylation site on EGFR, Y845, reduced the constitutive phosphorylation of NSCLC-EGFR mutants, as well as that of STAT3, Akt, Erk and Src, and reduced the mutant EGFR–Src association as well as proliferation, migration and anchorage-independent growth. Reduced anchorage-independent growth and migration were also observed when dominant-negative-Src was expressed in mutant EGFR-expressing cells. Overall, our findings show that mutant EGFR–Src interaction and cooperativity play critical roles in constitutive engagement of the downstream signaling pathways that allow NSCLC-associated EGFR mutants to mediate oncogenesis, and support the rationale to target Src-dependent signaling pathways in mutant EGFR-mediated malignancies.


BMC Cell Biology | 2009

Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@

Byung Min Chung; Srikumar M. Raja; Robert J. Clubb; Chun Tu; Manju George; Vimla Band; Hamid Band

BackgroundEpidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC) are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear.ResultsThis study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association.ConclusionThe findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis.


Nature Genetics | 2015

Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes

Ryan P. Hobbs; Daryle DePianto; Justin T. Jacob; Minerva C. Han; Byung Min Chung; Adriana S. Batazzi; Brian G. Poll; Yajuan Guo; Jingnan Han; SuFey Ong; Wenxin Zheng; Janis M. Taube; Daniela Cihakova; Fengyi Wan; Pierre A. Coulombe

Expression of the intermediate filament protein keratin 17 (K17) is robustly upregulated in inflammatory skin diseases and in many tumors originating in stratified and pseudostratified epithelia. We report that autoimmune regulator (Aire), a transcriptional regulator, is inducibly expressed in human and mouse tumor keratinocytes in a K17-dependent manner and is required for timely onset of Gli2-induced skin tumorigenesis in mice. The induction of Aire mRNA in keratinocytes depends on a functional interaction between K17 and the heterogeneous nuclear ribonucleoprotein hnRNP K. Further, K17 colocalizes with Aire protein in the nucleus of tumor-prone keratinocytes, and each factor is bound to a specific promoter region featuring an NF-κB consensus sequence in a relevant subset of K17- and Aire-dependent proinflammatory genes. These findings provide radically new insight into keratin intermediate filament and Aire function, along with a molecular basis for the K17-dependent amplification of inflammatory and immune responses in diseased epithelia.


Journal of Biological Chemistry | 2010

Distinct roles for Rho versus Rac/Cdc42 GTPases downstream of Vav2 in regulating mammary epithelial acinar architecture.

Lei Duan; Gengsheng Chen; Sumeet Virmani; Guo Guang Ying; Srikumar M. Raja; Byung Min Chung; Mark A. Rainey; Manjari Dimri; Cesar Ortega-Cava; Xiangshan Zhao; Robert J. Clubb; Chun Tu; Alagarsamy Lakku Reddi; Mayumi Naramura; Vimla Band; Hamid Band

Non-malignant mammary epithelial cells (MECs) undergo acinar morphogenesis in three-dimensional Matrigel culture, a trait that is lost upon oncogenic transformation. Rho GTPases are thought to play important roles in regulating epithelial cell-cell junctions, but their contributions to acinar morphogenesis remain unclear. Here we report that the activity of Rho GTPases is down-regulated in non-malignant MECs in three-dimensional culture with particular suppression of Rac1 and Cdc42. Inducible expression of a constitutively active form of Vav2, a Rho GTPase guanine nucleotide exchange factor activated by receptor tyrosine kinases, in three-dimensional MEC culture activated Rac1 and Cdc42; Vav2 induction from early stages of culture impaired acinar morphogenesis, and induction in preformed acini disrupted the pre-established acinar architecture and led to cellular outgrowths. Knockdown studies demonstrated that Rac1 and Cdc42 mediate the constitutively active Vav2 phenotype, whereas in contrast, RhoA knockdown intensified the Vav2-induced disruption of acini, leading to more aggressive cell outgrowth and branching morphogenesis. These results indicate that RhoA plays an antagonistic role to Rac1/Cdc42 in the control of mammary epithelial acinar morphogenesis.


Journal of Biological Chemistry | 2012

Identification of Novel Interaction between Annexin A2 and Keratin 17 EVIDENCE FOR RECIPROCAL REGULATION

Byung Min Chung; Christopher I. Murray; Jennifer E. Van Eyk; Pierre A. Coulombe

Background: Expression of EGFR, K17, and AnxA2 are correlated in cancer settings. Results: AnxA2 and K17 physically interact and undergo reciprocal regulation controlled in part by EGFR signaling. Conclusion: K17 serves as a regulator of the signaling pathway involving AnxA2, whereas AnxA2 regulates K17 stability. Significance: This study demonstrates a novel interaction and reciprocal regulation between AnxA2 and K17. Keratins are cytoplasmic intermediate filament proteins providing crucial structural support in epithelial cells. Keratin expression has diagnostic and even prognostic value in disease settings, and recent studies have uncovered modulatory roles for select keratin proteins in signaling pathways regulating cell growth and cell death. Elevated keratin expression in select cancers is correlated with higher expression of EGF receptor (EGFR), whose overexpression and/or mutation give rise to cancer. To explore the role of keratins in oncogenic signaling pathways, we examined the regulation of epithelial growth-associated keratin 17 (K17) in response to EGFR activation. K17 is specifically up-regulated in detergent-soluble fraction upon EGFR activation, and immunofluorescence analysis revealed alterations in K17-containing filaments. Interestingly, we identified AnxA2 as a novel interacting partner of K17, and this interaction is antagonized by EGFR activation. K17 and AnxA2 proteins show reciprocal regulation. Modulating expression of AnxA2 altered K17 stability, and AnxA2 overexpression delays EGFR-mediated change in K17 detergent solubility. Down-regulation of K17 expression, in turn, results in decreased AnxA2 phosphorylation at Tyr-23. These findings uncover a novel interaction involving K17 and AnxA2 and identify AnxA2 as a potential regulator of keratin filaments.


BioArchitecture | 2011

ESCRT proteins: Double-edged regulators of cellular signaling

Chun Tu; Gulzar Ahmad; Bhopal Mohapatra; Sohinee Bhattacharyya; Cesar Ortega-Cava; Byung Min Chung; Kay Uwe Wagner; Srikumar M. Raja; Mayumi Naramura; Vimla Band; Hamid Band

ESCRT pathway proteins play a key role in sorting ubiquitinated membrane receptors towards lysosomes providing an important mechanism for attenuating cell surface receptor signaling. However, recent studies point to a positive role of ESCRT proteins in signal transduction in multiple species studied under physiological and pathological conditions. ESCRT components such as Tsg101 and Hrs are overexpressed in human cancers and Tsg101 depletion is detrimental for cell proliferation, survival, and transformed phenotype of tumor cells. However, the mechanisms underlying the positive contributions of ESCRT pathway to surface receptor signaling have remained unclear. In a recent study, we showed that Tsg101 and Vps4 are essential for translocation of active Src from endosomes to focal adhesion and invadopodia, thereby revealing a role of ESCRT pathway in promoting Src-mediated migration and invasion. We discuss the implications of these and other recent studies which together suggest a role for the ESCRT pathway in recycling of endocytic cargo proteins, aside from its role in lysosomal targeting, potentially explaining the positive roles of ESCRT proteins in signal transduction.


World journal of clinical oncology | 2014

Nexus of signaling and endocytosis in oncogenesis driven by non-small cell lung cancer-associated epidermal growth factor receptor mutants

Byung Min Chung; Eric Tom; Neha Zutshi; Timothy Alan Bielecki; Vimla Band; Hamid Band

Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy.


Interdisciplinary Bio Central | 2012

Endocytic Regulation of EGFR Signaling

Byung Min Chung

Collaboration


Dive into the Byung Min Chung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vimla Band

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hamid Band

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chun Tu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srikumar M. Raja

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cesar Ortega-Cava

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjari Dimri

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar

Manju George

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge