Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byungkook Lee is active.

Publication


Featured researches published by Byungkook Lee.


Molecular Cancer | 2006

Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors

Jennifer A. A. Gubbels; Jennifer A. Belisle; Masanori Onda; Claudine Rancourt; Martine Migneault; Mitchell Ho; Tapan K. Bera; Joseph P. Connor; Bangalore K. Sathyanarayana; Byungkook Lee; Ira Pastan; Manish S. Patankar

BackgroundThe mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment.ResultsIn this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+). Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer.ConclusionThe strong binding kinetics of the mesothelin-MUC16 interaction and the cell adhesion between ovarian tumor cells and A431-Meso+ even in the presence of peritoneal fluid strongly support the importance of these two glycoproteins in the peritoneal metastasis of ovarian tumors. The demonstration that N-linked glycans are essential for mediating mesothlein-MUC16 binding may lead to novel therapeutic targets to control the spread of ovarian carcinoma.


Biophysical Chemistry | 1994

Enthalpy-entropy compensation in the thermodynamics of hydrophobicity

Byungkook Lee

Using Widoms potential distribution theory (J. Chem. Phys. 39 (1963) 2808; J. Phys. Chem. 86 (1982) 869), a general and a special theorems are derived, by means of which one can judge whether a particular sub-process of an overall process will produce compensating changes in enthalpy and entropy. The enthalpy-entropy compensation phenomena that are observed in the transfer process of a hydrophobic molecule from a non-aqueous phase to water are examined in the light of these theorems. It is concluded that most sub-processes involved in the hydrophobic transfer process are compensating except one, that of inserting a cavity corresponding to the solute molecule in the liquid. The reason that this process is non-compensating, and therefore most responsible for the hydrophobicity, is traced to the hard core overlap between solvent and the solute molecules.


Journal of Immunology | 2006

Characterization of the B Cell Epitopes Associated with a Truncated Form of Pseudomonas Exotoxin (PE38) Used to Make Immunotoxins for the Treatment of Cancer Patients

Masanori Onda; Satoshi Nagata; David J. FitzGerald; Richard Beers; Robert J. Fisher; James J. Vincent; Byungkook Lee; Michihiro Nakamura; Jaulang Hwang; Robert J. Kreitman; Raffit Hassan; Ira Pastan

Recombinant immunotoxins composed of an Ab Fv fragment joined to a truncated portion of Pseudomonas exotoxin A (termed PE38) have been evaluated in clinical trials for the treatment of various human cancers. Immunotoxin therapy is very effective in hairy cell leukemia and also has activity in other hemological malignancies; however, a neutralizing Ab response to PE38 in patients with solid tumors prevents repeated treatments to maximize the benefit. In this study, we analyze the murine Ab response as a model to study the B cell epitopes associated with PE38. Sixty distinct mAbs to PE38 were characterized. Mutual competitive binding of the mAbs indicated the presence of 7 major epitope groups and 13 subgroups. The competition pattern indicated that the epitopes are discrete and could not be reproduced using a computer simulation program that created epitopes out of random surface residues on PE38. Using sera from immunotoxin-treated patients, the formation of human Abs to each of the topographical epitopes was demonstrated. One epitope subgroup, E1a, was identified as the principal neutralizing epitope. The location of each epitope on PE38 was determined by preparing 41 mutants of PE38 in which bulky surface residues were mutated to either alanine or glycine. All 7 major epitope groups and 9 of 13 epitope subgroups were identified by 14 different mutants and these retained high cytotoxic activity. Our results indicate that a relatively small number of discrete immunogenic sites are associated with PE38, most of which can be eliminated by point mutations.


Biophysical Chemistry | 1994

Role of hydrogen bonds in hydrophobicity: the free energy of cavity formation in water models with and without the hydrogen bonds

B. Madan; Byungkook Lee

The free energies of cavity formation in water with and without hydrogen bonding potential were computed from the results of a set of Monte Carlo simulation calculations on pure liquid TIP4P water model and on the same model but with the electrostatic charges turned off (Lennard-Jones liquid). The free energies of cavity formation in the Lennard-Jones liquids are higher than or approximately equal to those in TIP4P water, depending, respectively, on whether the Lennard-Jones size parameter sigma is set equal to 3.15 A, which is the value of sigma for TIP4P water, or to 2.8 A, which is the commonly assumed value for the oxygen-oxygen distance between two hydrogen-bonded water molecules. This result indicates that changes in the hydrogen-bonded structure of water and/or in the orientational degree of freedom of water are not essential features in the production of the large free energy change upon cavity formation.


Journal of Biological Chemistry | 2009

A Binding Domain on Mesothelin for CA125/MUC16

Osamu Kaneko; Lucy Gong; Jingli Zhang; Johanna K. Hansen; Raffit Hassan; Byungkook Lee; Mitchell Ho

Ovarian cancer and malignant mesothelioma frequently express both mesothelin and CA125 (also known as MUC16) at high levels on the cell surface. The interaction between mesothelin and CA125 may facilitate the implantation and peritoneal spread of tumors by cell adhesion, whereas the detailed nature of this interaction is still unknown. Here, we used truncated mutagenesis and alanine replacement techniques to identify a binding site on mesothelin for CA125. We examined the molecular interaction by Western blot overlay assays and further quantitatively analyzed by enzyme-linked immunosorbent assay. We also evaluated the binding on cancer cells by flow cytometry. We identified the region (296–359) consisting of 64 amino acids at the N-terminal of cell surface mesothelin as the minimum fragment for complete binding activity to CA125. We found that substitution of tyrosine 318 with an alanine abolished CA125 binding. Replacement of tryptophan 321 and glutamic acid 324 with alanine could partially decrease binding to CA125, whereas mutation of histidine 354 had no effect. These results indicate that a conformation-sensitive structure of the region (296–359) is required and sufficient for the binding of mesothelin to CA125. In addition, we have shown that a single chain monoclonal antibody (SS1) recognizes this CA125-binding domain and blocks the mesothelin-CA125 interaction on cancer cells. The identified CA125-binding domain significantly inhibits cancer cell adhesion and merits evaluation as a new therapeutic agent for preventing or treating peritoneal malignant tumors.


BMC Structural Biology | 2009

Mesothelin, Stereocilin, and Otoancorin are predicted to have superhelical structures with ARM-type repeats

Bangalore K. Sathyanarayana; Yoonsoo Hahn; Manish S. Patankar; Ira Pastan; Byungkook Lee

BackgroundMesothelin is a 40 kDa protein present on the surface of normal mesothelial cells and overexpressed in many human tumours, including mesothelioma and ovarian and pancreatic adenocarcinoma. It forms a strong and specific complex with MUC16, which is also highly expressed on the surface of mesothelioma and ovarian cancer cells. This binding has been suggested to be the basis of ovarian cancer metastasis. Knowledge of the structure of this protein will be useful, for example, in building a structural model of the MUC16-mesothelin complex. Mesothelin is produced as a precursor, which is cleaved by furin to produce the N-terminal half, which is called the megakaryocyte potentiating factor (MPF), and the C-terminal half, which is mesothelin. Little is known about the function of mesothelin and there is no information on its possible three-dimensional structure. Mesothelin has been reported to be homologous to the deafness-related inner ear proteins otoancorin and stereocilin, for neither of which the three-dimensional structure is known.ResultsThe BLAST and PSI-BLAST searches confirmed that mesothelin and mesothelin precursor proteins are remotely homologous to stereocilin and otoancorin and more closely homologous to the hypothetical protein MPFL (MPF-like). Secondary structure prediction servers predicted a predominantly helical structure for both mesothelin and mesothelin precursor proteins and also for stereocilin and otoancorin. Three-dimensional structure prediction servers INHUB and I-TASSER produced structural models for mesothelin, which consisted of superhelical structures with ARM-type repeats in conformity with the secondary structure predictions. Similar ARM-type superhelical repeat structures were predicted by 3D-PSSM server for mesothelin precursor and for stereocilin and otoancorin proteins.ConclusionThe mesothelin superfamily of proteins, which includes mesothelin, mesothelin precursor, megakaryocyte potentiating factor, MPFL, stereocilin and otoancorin, are predicted to have superhelical structures with ARM-type repeats. We suggest that all of these function as superhelical lectins to bind the carbohydrate moieties of extracellular glycoproteins.


Protein Science | 2001

Circularly permuted proteins in the protein structure database

Jongsun Jung; Byungkook Lee

Some proteins are homologous to others after their sequence is circularly permuted. A few such proteins have been recognized, mainly by sequence comparison, but also by comparing their three‐dimensional structures. Here we report the result of a systematic search for all protein pairs in the SCOP 90% id domain database that become structurally superimposable when the sequence of one of the pairs is circularly permuted. Using a reasonable set of criteria, we find that 47% of all protein domains are superimposable to at least one other protein domain in the database after their sequence is circularly permuted. Many of these are symmetric proteins, which superimpose to another protein both with and without a circular permutation of the sequence. However, 412 of the total 3035 domains are nonsymmetric, and these become structurally superimposable to another protein only after a circular permutation of the sequence. These include most known and many previously undetected circularly permuted proteins with remote homology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes.

Ronit Mazor; Jaime Eberle; Xiaobo Hu; Aaron Vassall; Masanori Onda; Richard Beers; Elizabeth Lee; Robert J. Kreitman; Byungkook Lee; David Baker; Christopher King; Raffit Hassan; Itai Benhar; Ira Pastan

Significance Recombinant immunotoxins have produced complete remissions in leukemia patients where many doses can be given but are less active in patients with solid tumors because their immune system makes antidrug antibodies, which inactivate the immunotoxin. To suppress the immune response, we have identified and largely silenced the T-cell epitopes responsible for the immune response. A redesigned immunotoxin with T-cell epitope mutations is highly cytotoxic to cell lines and to cells isolated from cancer patients and produces complete remissions in mice with human cancer xenografts. The approach described can be applied to deimmunize other therapeutically useful foreign proteins. Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins.


Proteins | 2014

Assessment of template‐free modeling in CASP10 and ROLL

Chin-Hsien Tai; Hongjun Bai; Todd J. Taylor; Byungkook Lee

We present the assessment of predictions for Template‐Free Modeling in CASP10 and a report on the first ROLL experiment wherein predictions are collected year round for review at the regular CASP season. Models were first clustered so that duplicated or very similar ones were grouped together and represented by one model in the cluster. The representatives were then compared with targets using GDT_TS, QCS, and three additional superposition‐independent score functions newly developed for CASP10. For each target, the top 15 representatives by each score were pooled to form the Top15Union set. All models in this set were visually inspected by four of us independently using the new plugin, EvalScore, which we developed with the UCSF Chimera group. The best models were selected for each target after extensive debate among the four examiners. Groups were ranked by the number of targets (hits) for which a groups model was selected as one of the best models. The Keasar group had most hits in both categories, with four of 19 FM and eight of 36 ROLL targets. The most successful prediction servers were QUARK from Zhangs group for FM category with three hits and Zhang‐server for the ROLL category with seven hits. As observed in CASP9, many successful groups were not true “template‐free” modelers but used remote templates and/or server models to obtain their winning models. The results of the first ROLL experiment were broadly similar to those of the CASP10 FM exercise. Proteins 2014; 82(Suppl 2):57–83.


Cancer Research | 2008

Topology of NGEP, a Prostate-Specific Cell:Cell Junction Protein Widely Expressed in Many Cancers of Different Grade Level

Sudipto Das; Yoonsoo Hahn; Dawn A. Walker; Satoshi Nagata; Mark C. Willingham; Donna M. Peehl; Tapan K. Bera; Byungkook Lee; Ira Pastan

New gene expressed in prostate (NGEP) is a prostate-specific polytopic membrane protein found at high concentrations at cell:cell contact regions. To determine if NGEP is a useful target for antibody-based therapy of prostate cancer, we performed an immunohistochemical analysis of 126 human prostate carcinoma samples using polyclonal anti-NGEP sera and found that 91% of the cancers express NGEP protein. To elucidate the topology of NGEP and guide the development of monoclonal antibodies (mAb) reacting with the extracellular regions of NGEP, a hemagglutinin epitope tag was inserted at several positions within the NGEP sequence. The tagged proteins were expressed in 293T cells and locations of the tags were determined by immunofluorescence in intact or permeabilized cells. The results indicate that NGEP contains eight transmembrane domains with both the NH(2) and COOH termini of NGEP located inside the cell. We produced mAb to three regions that are predicted to be intracellular based on the epitope tag data (amino acids 1-352, 441-501, and 868-933), and as predicted, the mAb only detected the protein in permeabilized cells. NGEP is a glycoprotein with predicted glycosylation sites at N809 and N824. When these residues were converted to glutamine, glycosylation was abolished, confirming that the residues are extracellular. Our findings on the expression and the orientation of the NGEP protein serve as an important framework for the development of mAb targeting the extracellular regions of NGEP that could be used for prostate cancer immunotherapy.

Collaboration


Dive into the Byungkook Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tapan K. Bera

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Brinkmann

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Chin-Hsien Tai

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sun-Hee Jung

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masanori Onda

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Satoshi Nagata

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge