Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. A. Haswell is active.

Publication


Featured researches published by C. A. Haswell.


Publications of the Astronomical Society of the Pacific | 2006

The WASP Project and the SuperWASP Cameras

Don Pollacco; I. Skillen; A. Collier Cameron; D. J. Christian; C. Hellier; J. Irwin; T. A. Lister; R. A. Street; Richard G. West; D. R. Anderson; W. I. Clarkson; H. J. Deeg; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; Simon T. Hodgkin; K. Horne; Stephen R. Kane; F. P. Keenan; P. F. L. Maxted; A. J. Norton; Julian P. Osborne; N. Parley; R. Ryans; B. Smalley; P. J. Wheatley; D. M. Wilson

ABSTRACT The SuperWASP cameras are wide‐field imaging systems at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some 482 deg2 with an angular scale of 13 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


The Astrophysical Journal | 2009

WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered

L. Hebb; Andrew Collier-Cameron; B. Loeillet; Don Pollacco; G. Hébrard; R. A. Street; F. Bouchy; H. C. Stempels; C. Moutou; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson; I. McDonald; N. P. Gibson; S. Aigrain; D. R. Anderson; Chris R. Benn; D. J. Christian; B. Enoch; C. A. Haswell; C. Hellier; K. Horne; J. Irwin; T. A. Lister; P. F. L. Maxted; Michel Mayor; A. J. Norton

\farcs


Monthly Notices of the Royal Astronomical Society | 2007

WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE

A. Collier Cameron; F. Bouchy; G. Hébrard; P. F. L. Maxted; Don Pollacco; Frederic Pont; I. Skillen; B. Smalley; R. A. Street; Richard G. West; D. M. Wilson; Suzanne Aigrain; D. J. Christian; W. I. Clarkson; B. Enoch; A. Evans; A. Fitzsimmons; M. Fleenor; Michaël Gillon; C. A. Haswell; L. Hebb; C. Hellier; Simon T. Hodgkin; K. Horne; J. Irwin; S. R. Kane; F. P. Keenan; B. Loeillet; Tim Lister; Michel Mayor

\end{document} 7 pixel−1, and is capable of delivering photometry with accuracy better than 1% for objects having \documentclass{aastex} \usepackage{amsbsy} \usepa...


The Astrophysical Journal | 2010

Metals in the Exosphere of the Highly Irradiated Planet WASP-12b

L. Fossati; C. A. Haswell; Cynthia S. Froning; L. Hebb; S. Holmes; U. Kolb; Ch. Helling; A. Carter; P. J. Wheatley; Andrew Collier Cameron; B. Loeillet; Don Pollacco; R. A. Street; H. C. Stempels; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


Monthly Notices of the Royal Astronomical Society | 2008

WASP-3b: a strongly irradiated transiting gas-giant planet

Don Pollacco; I. Skillen; A. Collier Cameron; B. Loeillet; H. C. Stempels; F. Bouchy; N. P. Gibson; L. Hebb; G. Hébrard; Y. C. Joshi; I. McDonald; B. Smalley; A. M. S. Smith; R. A. Street; S. Udry; Richard G. West; D. M. Wilson; P. J. Wheatley; Suzanne Aigrain; K. Alsubai; Chris R. Benn; V. A. Bruce; D. J. Christian; W. I. Clarkson; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; C. Hellier; Samantha Hickey

We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219‐ 0005465 (GSC 02265‐00107 = WASP‐1) and USNO-B1.0 0964‐0543604 (GSC 00522‐ 01199 = WASP‐2). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radialvelocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80‐0.98 and 0.81‐ 0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 RJup, whereas WASP-2b has a radius in the range 0.65‐1.26 RJup.


Scopus | 2009

WASP-12b: The hottest transiting extrasolar planet yet discovered

L. Hebb; Andrew Collier-Cameron; H. C. Stempels; B. Enoch; K. Horne; N. Parley; B. Loeillet; C. Moutou; Don Pollacco; E. K. Simpson; Y. C. Joshi; N. P. Gibson; D. J. Christian; G. Hébrard; Francois Bouchy; R. A. Street; T. A. Lister; S. Udry; M. Mayor; D. Queloz; Richard G. West; I. Skillen; Chris R. Benn; D. M. Wilson; I. McDonald; Anderson; C. Hellier; P. F. L. Maxted; B. Smalley; S. Aigrain

We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 angstrom), NUVB (2655-2696 angstrom), and NUVC (2770-2811 angstrom). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5 sigma level. We detect extra absorption in the Mg II lambda lambda 2800 resonance line cores at the 2.8 sigma level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 +/- 0.24 R-J, 2.18 +/- 0.18 R-J, and 2.66 +/- 0.22 R-J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.


Monthly Notices of the Royal Astronomical Society | 2006

A fast hybrid algorithm for exoplanetary transit searches

A. Collier Cameron; Don Pollacco; R. A. Street; Tim Lister; Richard G. West; D. M. Wilson; F. Pont; D. J. Christian; W. I. Clarkson; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; C. Hellier; Simon T. Hodgkin; K. Horne; J. Irwin; S. R. Kane; F. P. Keenan; A. J. Norton; N. Parley; J. P. Osborne; R. Ryans; I. Skillen; P. J. Wheatley

We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every 1.846 834 ± 0.000 002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have T eff = 6400 ± 100 K and log g = 4.25 ± 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76 +0.08 −0.14 MJ and radius 1.31 +0.07 −0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.


The Astrophysical Journal | 2001

Modeling the low state spectrum of the x-ray nova xte j1118+480

Ann A. Esin; Jeffrey E. McClintock; Jeremy J. Drake; M. R. Garcia; C. A. Haswell; R. I. Hynes; Michael P. Muno

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


The Astrophysical Journal | 2001

Complete and simultaneous spectral observations of the black hole X-Ray nova XTE J1118+480

Jeffrey E. McClintock; C. A. Haswell; M. R. Garcia; Jeremy J. Drake; R. I. Hynes; Herman L. Marshall; Michael P. Muno; S. Chaty; Peter Marcus Garnavich; Paul J. De Groot; W. H. G. Lewin; Christopher W. Mauche; Jon M. Miller; G. G. Pooley; Chris R. Shrader; Saeqa Dil Vrtilek

We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the methods operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.


The Astrophysical Journal | 2000

The X-Ray Transient XTE J1118+480: Multiwavelength Observations of a Low-State Minioutburst

R. I. Hynes; Christopher W. Mauche; C. A. Haswell; Chris R. Shrader; Wei Cui; S. Chaty

Based on recent multiwavelength observations of the new X-ray nova XTE J1118+480, we can place strong constraints on the geometry of the accretion flow in which a low/hard-state spectrum, characteristic of an accreting black hole binary, is produced. We argue that the absence of any soft blackbody-like component in the X-ray band implies the existence of an extended hot optically thin region, with the optically thick cool disk truncated at some radius Rtr 55RSchw. We show that such a model can indeed reproduce the main features of the observed spectrum: the relatively high optical to X-ray ratio, the sharp downturn in the far-UV band, and the hard X-ray spectrum. The absence of the disk blackbody component also underscores the requirement that the seed photons for thermal Comptonization be produced locally in the hot flow, e.g., via synchrotron radiation. We attribute the observed spectral break at 2 keV to absorption in a warm, partially ionized gas.

Collaboration


Dive into the C. A. Haswell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Horne

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. Street

Las Cumbres Observatory Global Telescope Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Christian

California State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge