C.A. Oliveira Ribeiro
Federal University of Paraná
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.A. Oliveira Ribeiro.
Environment International | 2008
A. L. Miranda; H. Roche; Marco Antonio Ferreira Randi; Manoel Lima de Menezes; C.A. Oliveira Ribeiro
For assessing the impact of chlorinated compounds, such as organochlorine pesticides, polychlorinated biphenyls, chlorotriazines (atrazine, simazine), and chlorinated phenylureas (diuron), on the Ponta Grossa lake South of Brazil, ten freshwater trahira fish (Hoplias malabaricus) were collected in October 2005. The contamination status was evaluated by the energy budget and various histopathological markers. The results showed detectable amounts of persistent organic pollutants (POPs) in the liver and muscle; the bioaccumulation was higher in the liver than in the muscle. The presence of some banned pesticides, such as hexachlorobenzene and dichlorodiphenyltrichloroethane, in the liver suggests an acute exposure to these compounds. Some physiological disturbances and morphological damages found in the liver of H. malabaricus were associated with chlorinated-compound bioaccumulation. The most important alterations in the liver were lesions such as fibrosis, large necrosis area, leukocyte infiltration, and the absence of melanomacrophages (MM). Individuals containing higher concentrations of pesticides, such as aldrin, alachlor, and dichloroaniline (a metabolite of diuron), showed the nonoccurrence of MM in the liver. These data suggest an immunosuppression in the individuals from Ponta Grossa Lake after exposure to POPs. According to the present data, the POPs found in the studied site are bioavailable, induce severe damages in target organs such as the liver, and can disturb the immune system of the trahira. This is the first study of POPs in the Paraná state, and one among the few studies in the south of Brazil. The present data suggest and motivate further chemical and biomonitoring studies in freshwater ecosystems in the south of Brazil.
Toxicology in Vitro | 2008
F. Filipak Neto; Silvio M. Zanata; H.C. Silva de Assis; Lia S. Nakao; Marco Antonio Ferreira Randi; C.A. Oliveira Ribeiro
Here, we examined the impact of dichlorodiphenyltrichloroethane (DDT) and monomethyl mercury (MeHg) on the redox milieu and survival of hepatocytes from Hoplias malabaricus (traíra). After isolation and attachment of cells, we established one control and four treatments: DDT (50nM of DDT), MeHg I (0.25microM of MeHg), MeHg II (2.5microM of MeHg) and DDT * MeHg I (combination of 50nM of DDT and 0.25microM of MeHg). After four days the exposed hepatocytes presented significantly increased damage in lipids (all treatments), proteins (DDT * MeHg I and MeHg II) and reduced cell viability (all treatments). Also the antioxidant enzymes catalase, glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase and superoxide dismutase were affected. The current data showed that despite of some protective responses, the increased disturbs on membrane lipids and proteins, increased hydrogen peroxide levels, and decreased glutathione concentration and cell viability strongly indicate oxidative stress as the reason of hepatotoxicity due to DDT and MeHg exposure. In addition, DDT and MeHg together had greater effect than alone when G6PDH and glutathione-S-transferase activities and lipids damage were considered. These findings are indicative of hepatotoxicity occurring at realistic concentrations of DDT and MeHg found in Amazonian fish tissues.
Environmental Monitoring and Assessment | 2009
Alberto Katsumiti; F.X. Valdez Domingos; M. Azevedo; M. D. da Silva; R. C. Damian; Marina Isabel Mateus de Almeida; H.C. Silva de Assis; Marta Margarete Cestari; Marco Antonio Ferreira Randi; C.A. Oliveira Ribeiro; Carolina A. Freire
The Vicuña oil tanker exploded in Paranaguá Bay (South of Brazil), during methanol unloading operations in front of Paranaguá Harbour, on November 15th, 2004, releasing a large amount of bunker oil and methanol. Two weeks after the accident, the acute effects of the Vicuña Oil Spill (VOS) were evaluated in the demersal catfish Cathorops spixii, comparing a contaminated (at the spill site) and a reference site inside the Bay. Data were compared to previous measurements, taken before the accident, in the same species, from the same sites. The physiological biomarkers were the ones that best reflected acute effects of the spill: plasma osmolality, chloride, calcium, magnesium, and potassium. Morphological (liver and gill histopathology) and genetic (piscine micronucleus and DNA strand breaks) biomarkers revealed that damage was already present in fishes from both reference and contaminated sites inside the Bay. Thus, the reference site is not devoid of contamination, as water circulation tends to spread the contaminants released into other areas of the Bay. Acute field surveys of oil spill effects in harbour areas with a long history of contamination should thus be viewed with caution, and whenever possible previous evaluations should be considered for proper appraisal of biomarker sensitivity, especially in mobile bioindicators such as fish.
Ecotoxicology and Environmental Safety | 2009
Carlos Alberto Silva; C.A. Oliveira Ribeiro; Alberto Katsumiti; M.L.P. Araújo; E.M. Zandoná; G.P. Costa Silva; J. Maschio; Hélène Roche; H.C. Silva de Assis
Fish (Astyanax sp.) were exposed to water samples from the Arroio Saldanha, locality of an oil spill, and the Barigui River (upstream and downstream of the confluence of the river and Arroio Saldanha), Brazil. Histopathological and biochemical biomarkers, as acetylcholinesterase (AchE), ethoxyresorufin-O-deethylase (EROD), catalase (CAT), glutathione-S-transferase (GST) activities, lipid peroxidation (LPO) levels, and amounts of polynuclear aromatic hydrocarbon residues (PAHs) in bile were evaluated. PAHs, metals, and surfactants were investigated in the water samples. CAT and GST activities increased in the Arroio Saldanha sample, whereas CAT activity and LPO levels were increased in the upstream and downstream sites. The results suggested a toxic action of the free radicals and disturbance of the antioxidant defense mechanisms. However, the EROD and AchE activities were not affected. Histopathology studies showed severe lesions. The oil is still bioavailable to biota, moreover, other pollution sources continue to affect the water in the Barigui River.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010
D.D. Moura Costa; F. Filipak Neto; Marina Dias Costa; R.N. Morais; J.R.E. Garcia; B.M. Esquivel; C.A. Oliveira Ribeiro
This study investigated the effects of different doses of 17-beta-estradiol (E(2)) in Rhamdia quelen. Groups of males exposed to different doses of E(2) (0.1 mg kg(-)(1), 1 mg kg(-)(1) and 10 mg kg(-)(1)) were compared with non-exposed male and female fish groups. Among the considered biomarkers, no significant differences were observed for micronuclei test, reduced glutathione concentration and lipid peroxidation. All E(2)-treated individuals had decreased glutathione S-transferase activity. Increased catalase and superoxide dismutase activities, increased vitellogenin expression and decreased metallothionein concentration were observed in males treated with the highest dose. Liver of all test groups showed necrotic areas, but cytoplasm vacuolization was again found only in the individuals exposed to highest dose. E(2) causes deleterious hepatic effects to R. quelen, and vitellogenin expression, catalase and superoxide dismutase activity and metallothionein concentration represent appropriate biomarkers for studying E(2) effects. Additionally, the response of some biomarkers was similar in males exposed to E(2) and unexposed females, and therefore exposure to endocrine disruptors may cause consequences for fish populations.
Toxicology in Vitro | 2011
Samuel Liebel; C.A. Oliveira Ribeiro; Rodrigo de Cássio da Silva; Wanessa Algarte Ramsdorf; Marta Margarete Cestari; Valéria Freitas de Magalhães; J.R.E. Garcia; B.M. Esquivel; F. Filipak Neto
Cylindrospermopsin is a potent toxicant for eukaryotic cells produced by several cyanobacteria. Recently, primary hepatocyte cultures of Neotropical fish have been established, demonstrating to be a quite efficient in vitro model for cellular toxicology studies. In the current study, a protocol for culture of Prochilodus lineatus hepatocytes was established and utilized to investigate the cellular responses to purified cylindrospermopsin exposure. Hepatocytes were successfully dissociated with dispase, resulting in a cell yield of 6.36 × 10(7)cells g(-1) of liver, viability of 97% and attachment on uncoated culture flasks. For investigation of cylindrospermopsin effects, hepatocytes were dissociated, cultured during 96 h and exposed to three concentrations of the toxin (0.1, 1.0 or 10 μgl(-1)) for 72 h. Cylindrospermopsin exposure significantly decreased cell viability (0.1 and 1 μgl(-1)) and multixenobiotic resistance mechanism, MXR (all exposed groups), but increased reactive oxygen/nitrogen species levels (all exposed groups) and lipid peroxidation (10 μgl(-1)). On the other hand no significant alterations were observed for other biochemical biomarkers as 2GSH/GSSG ratio, protein carbonyl levels and DNA strand breaks or glutathione S-transferase and glucose 6-phosphate dehydrogenase activities. In conclusion, hepatocytes might be made sensitive to cylindrospermopsin, at least in part, due to reduction of xenobiotics and endobiotics efflux capacity by MXR. Additionally, the toxin exposure suggests important issues regarding hepatocytes survival at the lowest cylindrospermopsin concentrations.
Ecotoxicology and Environmental Safety | 2013
Maritana Mela; Izonete Cristina Guiloski; Halina Binde Doria; I.S. Rabitto; C.A. da Silva; A.C. Maraschi; Viviane Prodocimo; Carolina A. Freire; Marco Antonio Ferreira Randi; C.A. Oliveira Ribeiro; H.C. Silva de Assis
As it is the case in all animal food production systems, it is often necessary to treat farmed fish for diseases and parasites. Quite frequently, fish farmers still rely on the aggressive use of copper to control bacterial infections and infestations by ecto-parasites, and to manage the spread of diseases. The susceptibility of the neotropical fish Rhamdia quelen to copper was here evaluated at different waterborne copper concentrations (2, 7 or 11 μg Cu L(-1)) for 96 h, through a multi biomarkers approach. Liver histopathological findings revealed leukocyte infiltration, hepatocyte vacuolization and areas of necrosis, causing raised levels of lesions upon exposure to 7 and 11 μg Cu L(-1). Decreased occurrence of free melano-macrophages and increased densities of melano-macrophage centers were noted upon exposure to 11 μg Cu L(-1). Gills showed damages on their secondary lamellae already at 2 μg Cu L(-1); hypertrophy and loss of the microridges of pavement cells at 7 and 11 μg L(-1), and increased in chloride cell (CC) apical surface area (4.9-fold) and in CC density (1.5-fold) at 11 μg Cu L(-1). In the liver, catalase (CAT), glutathione peroxidase activities (GPx) and glutathione concentration (GSH) remained unchanged, compared to the control group. However, there was inhibition of 7-ethoxyresorufin-O-deethylase (EROD) at all copper concentrations tested. Glutathione reductase activity (GR) was reduced and levels of lipid peroxidation (LPO) were increased at 11 μg Cu L(-1). Glutathione S-transferase activity (GST) at 7 μg Cu L(-1) and superoxide dismutase activity (SOD) at both 7 and 11 μg Cu L(-1) were reduced. However, copper exposure did not alter brain and muscle acetylcholinesterase (AChE) activity. Osmoregulatory function was also disturbed, in agreement with the above-mentioned changes noted in the gills, as detected by plasma osmolality reduction in the group exposed to 11 μg Cu L(-1), and plasma chloride reduction at 2 μg Cu L(-1). These concentrations also, coherently, lead to inhibition of branchial carbonic anhydrase activity. In the kidney, increased carbonic anhydrase activity was measured in the groups exposed to 2 and 7 μg Cu L(-1). When these effects are compared to data available in the literature for other freshwater fish, also for 96 h of exposure, R. quelen appears as a relatively sensitive species. In addition, the concentrations employed here were quite low in comparison to levels used for disease control in real culture practices (ranging from 4 μg Cu L(-1) used against bacteria to 6000 μg Cu L(-1) against fungal infections). We can conclude that the concentrations frequently employed in aquaculture are in fact not safe enough for this species. Such data are essential for the questioning and establishment of new policies to the sector.
Ecotoxicology and Environmental Safety | 2011
Juliana Pamplona; Eliane T. Oba; T.A. da Silva; Luiz Pereira Ramos; Wanessa Algarte Ramsdorf; Marta Margarete Cestari; C.A. Oliveira Ribeiro; Aleksander Roberto Zampronio; H.C. Silva de Assis
The use of the non-steroidal anti-inflammatory drugs such as dipyrone is so widespread that this drug and its metabolites have been detected in effluents and surface water. This study aimed to evaluate the potential toxic effects of dipyrone on the aquatic environment, using a native fish species, Rhamdia quelen. Fish were exposed to three concentrations of dipyrone, 0.5, 5 and 50 μg/L, in the water for 15 days, and hematological, biochemical, genetic and morphological biomarkers were evaluated. The glutathione S-transferase activity decreased in the highest concentration in relation to the control group. In addition, hematocrit, red blood cells and thrombocyte counts were decreased in all three exposed groups in relation to the control group. The comet assay showed DNA damage at the lowest concentration of dipyrone and significant kidney damage. Those results suggest that a constant exposure of aquatic organisms to dipyrone presents potential toxic effects.
Brazilian Journal of Medical and Biological Research | 2006
Daniela Maria Oliveira Bonci; S.M.A. de Lima; Sonia Regina Grötzner; C.A. Oliveira Ribeiro; Dania E. Hamassaki; D.F. Ventura
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 microg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 microg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 +/- 393 cells/mm2) compared to control (1886 +/- 892 cells/mm2; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 +/- 56 cells/mm2 (2 microg/g) and 845 +/- 82 cells/mm2 (6 microg/g), also lower than control (1312 +/- 31 cells/mm2; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 microg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Toxicology in Vitro | 2010
D. Bussolaro; F. Filipak Neto; C.A. Oliveira Ribeiro
The aim of the current work was to investigate the effects of dichlorodiphenyltrichloroethane (DDT) and monomethyl mercury (MeHg) on hepatocytes from tropical fish Hypostomus commersoni (cascudo). In order to verify DDT and MeHg impacts on the redox milieu, cells were exposed for 4 days to 50 nM of DDT, 0.25 and 2.5 microM of MeHg and to a combination of 50 nM of DDT and 0.25 microM of MeHg. These concentrations were compared with those previously published (Filipak Neto et al., 2008) for the predator fish Hoplias malabaricus (traíra). The effects were mostly noticeable on reduced glutathione concentration and delta-aminolevulinic acid dehydratase and glutathione S-transferase activity. Catalase activity increased in the group exposed to 2.5 microM of MeHg and hydrogen peroxide levels decreased in all exposed groups. Also, superoxide anion levels decreased in the groups exposed to 2.5 microM of MeHg and DDT *MeHg group. Cell viability decreased only in the DDT exposed group, demonstrating that the antioxidant defense mechanism of H. commersoni hepatocytes is more efficient than H. malabaricus. These results corroborate the resistance of H. commersoni to polluted areas and support the hypothesis that this species is more resistant to DDT and MeHg than H. malabaricus species.